Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Study of hydrodesulfurization of 4,6-DM-DBT over Pd supported on mesoporous USY zeolite

Lei Zhang, Wenqian Fu, Qingping Ke, Shuai Zhang, Huile Jin, Jianbo Hu, Shun Wang, Tian-di Tang*

College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang 325027, PR China

ARTICLE INFO

Article history: Received 17 February 2012 Received in revised form 4 May 2012 Accepted 20 May 2012 Available online 27 May 2012

Keywords: Mesoporous USY Pd catalyst 4,6-DM-DBT Hydrodesulfurization

1. Introduction

The reduction of the sulfur content in diesel fuel has been paid much attention in recent years owing to stringent environmental legislations in many countries for the sulfur level [1–3]. To meet the latest standard (less than 10 ppm), even the refractory sulfur species, such as 4,6-dimethyldibenzothiophene (4,6-DM-DBT), should be sufficiently removed. The 4,6-DM-DBT can be desulfurized to 3,3'-dimethylbiphenyl (DM-BP) by direct desulfurization pathway (DDS), and can be hydrogenated to sulfur-containing intermediates that were subsequently desulfurized (HYD) [4-6]. However, the DDS rate is low due to the steric hindrance of the methyl groups present at the 4 and 6 positions [7–9]. When the phenyl rings were hydrogenated, the molecule was distorted, resulting in the reduction of the steric hindrance, and favor the desulfurization of the sulfur species [9-11]. Therefore, the catalyst with high hydrogenation activity is desired for the deep hvdrodesulfurization (HDS) of 4,6-DM-DBT.

It is well known that, compared to conventional metal sulfides (CoMo and NiMo), noble metals catalysts, such as Pd, Pt and Pd–Pt, possess higher hydrogenation activity [12–14], but they are sensitive to sulfur-containing compounds. Notably, the sulfur resistance of noble metal catalysts could be significantly enhanced by using the acidic supports such as ZSM-5, Beta and Y zeolites [15–19]. The explanation is that the strong acidic sites on the zeolite support result in electron-deficience metal particles, which reduces their

ABSTRACT

Two ultra-stable Y zeolites (USY550 and USY600) with mesoporous volumes of 0.15 and 0.25 cm³/g were prepared by steam dealumination at 550 and 600 °C, respectively. Pd catalysts were supported on γ -Al₂O₃, H-forms of zeolite Y (HY), mesoporous USY for hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene (4,6-DM-DBT). The 4,6-DM-DBT conversions over Pd/USY550 (85.7%) and Pd/USY600 (76.9%) are higher than over Pd/HY (43.7%) due to the facilitated mass transfer of 4,6-DM-DBT in the mesopores USY. The better HDS performance of Pd/USY than Pd/ γ -Al₂O₃ is attributed to the stronger acidity of USY, as demonstrated by the stepwise temperature-programmed desorption of ammonia. Thermogravimetric and X-ray photoelectron spectroscopic analysis of the used catalysts showed that the poison of Pd particles over the supports by sulfur was responsible for the catalyst deactivation.

© 2012 Elsevier B.V. All rights reserved.

interaction with H_2S [20–23]. Moreover, strong acidity is also helpful for spillover of hydrogen atoms from the metal particles to the aromatic sulfur-containing molecules, which could create a second hydrogenation pathway [24–26].

Nevertheless, noble metals supported on conventional zeolites cannot accomplish the deep HDS of the bulky 4,6-DM-DBT molecules due to their pore size limitation [16–19]. Recently, mesoporous zeolites such as Beta, MFI and FAU have been successfully synthesized by using hard and soft templates [19,27–35], and their supported Pd catalysts showed excellent catalytic activities in the deep HDS of 4,6-DM-DBT [16–19]. However, the industrial applications of these mesoporous zeolites are still limited owing to the complicated synthetic procedure and the high cost of the organic templates [34].

In this work, ultra-stable Y zeolites (USY) with different mesoporous volumes and acidities were tailored by steam dealumination process, and the Pd supported on USY were prepared for the deep HDS of 4,6-DM-DBT. Compared with Pd supported on γ -Al₂O₃ and H-form of zeolite Y (HY), Pd supported on acidic mesoporous USY exhibited higher catalytic activity in HDS of 4,6-DM-DBT. These results demonstrate that supports with large mesoporous surface area and high mesoporous volume as well as relatively strong acidity are desired for HDS of 4,6-DM-DBT over Pd catalysts.

2. Experimental

2.1. Materials synthesis

Zeolite NaY was synthesized from an aluminosilicate gel with molar ratios of 1.0Al₂O₃/3.4Na₂O/7.9SiO₂/150.0H₂O. In a typical

^{*} Corresponding author. Tel.: +86 577 86689366; fax: +86 577 88373098. *E-mail address*: Tangtd2006@yahoo.com.cn (T.-d. Tang).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apcata.2012.05.028