The whole-beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

Z.X. Zhang ${ }^{\mathrm{a}, \mathrm{b}, *}$, Q. Zhang ${ }^{\mathrm{a}, \mathrm{b}}$, X.L. Li ${ }^{\mathrm{a}, \mathrm{b}}$, T.L. Qian ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Institute of Chemical Machinery Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
${ }^{\mathrm{b}}$ Engineering Research Center of High Pressure Process Equipment and Safety, Ministry of Education, Hangzhou, Zhejiang 310027, People's Republic of China

ARTICLE INFO

Article history:

Received 29 July 2010
Received in revised form
29 November 2010
Accepted 1 December 2010
Available online 7 December 2010

Keywords:

Dual rotors
Slight rotating speed difference
Whole-machine balancing
Correlation method

Abstract

Identification of the unbalance mass is pivotal in the balancing of a dual-rotor system with a slight speed difference. In the first part, this paper presents the whole-beat correlation method for the whole-machine balancing of the dual-rotor system based on correlation theory. In the second part, an optimized whole-beat correlation method is proposed based on error analysis. In the last part, a balancing experiment is conducted on the horizontal decanter centrifuge, validating the precision, efficiency, and applicability of the recommended method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There is a special dual-rotor system in industry. As shown in Fig. 1, this co-axial dual-rotor system comprises an outer rotor together with an inner rotor conforming to the profile of the outer rotor by bearings on the two sides, rotating at a slightly differential speed compared with the outer rotor. The outer rotor is equipped on the bearing pedestal [1,2].

When the inner and outer rotors both are in presence of unbalance mass, there will be a combined vibration described as Eq. (1), which can be tested from the outer bearing pedestal:

$$
\begin{equation*}
x(t)=x_{1}(t)+x_{2}(t)=A_{1} \sin \left(\omega_{1} t+\varphi_{1}\right)+A_{2} \sin \left(\omega_{2} t+\varphi_{2}\right) \tag{1}
\end{equation*}
$$

where $x_{1}(t)$ and $x_{2}(t)$ are the vibration signals and $A_{i}(i=1,2)$ the amplitude, $\omega_{i}(i=1,2)$ the rotating angular frequency, and $\varphi_{i}(i=1,2)$ the vibration phase relative to the key-phase. The subscripts 1 and 2 represent the outer and inner rotor, respectively, and $\omega_{2}>\omega_{1}$.

Eq. (2) can be obtained according to the trigonometric formula:

$$
\begin{equation*}
x(t)=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(\left(\omega_{1}-\omega_{2}\right) t+\left(\varphi_{1}-\varphi_{2}\right)\right)} \sin \left(\left(\frac{\omega_{1}+\omega_{2}}{2}\right) t+\left(\frac{\varphi_{1}+\varphi_{2}}{2}+\Delta \varphi\right)\right) \tag{2}
\end{equation*}
$$

where

$$
\Delta \varphi=\arctan \left(\left(\frac{A_{1}-A_{2}}{A_{1}+A_{2}}\right) \tan \left(\left(\frac{\omega_{1}-\omega_{2}}{2}\right) t+\left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)\right)\right)
$$

[^0]
[^0]: * Corresponding author. Tel.: +86 57187952821.

 E-mail address: birdflyzzx@zju.edu.cn (Z.X. Zhang).

