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a b s t r a c t

This paper considers the problem of finite element model (FEM) updating in the context

of model selection. The FEM updating problem arises from the need to update the initial

FE model that does not match the measured real system outputs. This inverse system

identification-problem is made even more complex by the uncertainties in modeling

some of the structural parameters. Such uncertainty often results in a number of

competing forms of FE models being proposed which leads to lack of consensus in the

field. A model can be formulated in a number of ways; by the number, the location and

the form of the updating parameters. We propose the use of a Bayesian evidence

statistic to help decide on the best model from any given set of models. This statistic

uses the recently developed stochastic nested sampling algorithm whose by-product is

the posterior samples of the updated model parameters. Two examples of real

structures are each modeled by a number of competing finite element models. The

individual model evidences are compared using the Bayes factor, which is the ratio of

evidences. Jeffrey’s scale is then used to determine the significance of the model

differences obtained through the Bayes factor.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

System identification [17] forms an important stage of many scientific modeling problems and is mainly concerned
with the derivation of mathematical models of a system from its measured dynamics. The results from the system
identification can then be used to understand and predict the system responses in future designs or different
environments. Therefore the analyst is interested in the accuracy, confidence range, and more critically the correctness
of the assumed mathematical model.

In this paper, the systems considered are structural and the model domain is that of finite element models (FEMs). In
this context, these models are used to approximate the structural dynamics of systems such as train chassis, aircraft
fuselages, bicycle frames, or civil structures. It is often the case that the finite element predictions do not match the
measured structure’s dynamic response [10,12]. This inconsistency may be due to the following: the form of the FE model,
the identity and magnitude of the uncertain parameters, the noise and/or errors in the measurements. Furthermore the
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