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Abstract

We consider the ‘classical’ Boussinesq system of water wave theory, which belongs to the class of Boussinesq systems modelling
two-way propagation of long waves of small amplitude on the surface of water in a horizontal channel. (We also consider its
completely symmetric analog.) We discretize the initial-boundary-value problem for these systems, corresponding to homogeneous
Dirichlet boundary conditions on the velocity variable at the endpoints of a finite interval, using fully discrete Galerkin-finite
element methods of high accuracy. We use the numerical schemes as exploratory tools to study the propagation and interactions of
solitary-wave solutions of these systems, as well as other properties of their solutions.
© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the so-called ‘classical’ Boussinesq system (CB)

ηt + ux + (ηu)x = 0,

ut + ηx + uux − 1

3
uxxt = 0,

(1.1)

for x ∈ R, t > 0, supplemented by the initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), (1.2)

where η0, u0 are given real functions onR. The system (1.1) is a Boussinesq-type approximation of the two-dimensional
Euler equations that models two-way propagation of long waves of small amplitude on the surface of an incompressible,
inviscid fluid in a uniform horizontal channel of finite depth. The variables in (1.1) and (1.2) are nondimensional and
unscaled: x and t are proportional to position along the channel and time, respectively, and η(x, t) and u(x, t) are
proportional to the elevation of the free surface above the level of rest y = 0, and to the horizontal velocity of the fluid at
a height y = −1+ (1+ η(x, t)) /

√
3, respectively. (In terms of these variables the bottom of the channel is at y =− 1.)
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