Original article

Numerical solution of the 'classical' Boussinesq system

D.C. Antonopoulos ${ }^{\text {a }}$, V.A. Dougalis ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Athens, 15784 Zographou, Greece
${ }^{\mathrm{b}}$ Institute of Applied and Computational Mathematics, FORTH, 71110 Heraklion, Greece
Received 24 November 2009; received in revised form 13 September 2011; accepted 16 September 2011
Available online 18 November 2011

Abstract

We consider the 'classical' Boussinesq system of water wave theory, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a horizontal channel. (We also consider its completely symmetric analog.) We discretize the initial-boundary-value problem for these systems, corresponding to homogeneous Dirichlet boundary conditions on the velocity variable at the endpoints of a finite interval, using fully discrete Galerkin-finite element methods of high accuracy. We use the numerical schemes as exploratory tools to study the propagation and interactions of solitary-wave solutions of these systems, as well as other properties of their solutions.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
Keywords: Water waves; 'Classical' Boussinesq systems; Initial-boundary-value problems; Fully discrete Galerkin-finite element methods; Solitary waves

1. Introduction

We consider the so-called 'classical' Boussinesq system (CB)

$$
\begin{align*}
& \eta_{t}+u_{x}+(\eta u)_{x}=0, \\
& u_{t}+\eta_{x}+u u_{x}-\frac{1}{3} u_{x x t}=0, \tag{1.1}
\end{align*}
$$

for $x \in \mathbb{R}, t>0$, supplemented by the initial conditions

$$
\begin{equation*}
\eta(x, 0)=\eta_{0}(x), \quad u(x, 0)=u_{0}(x), \tag{1.2}
\end{equation*}
$$

where η_{0}, u_{0} are given real functions on \mathbb{R}. The system (1.1) is a Boussinesq-type approximation of the two-dimensional Euler equations that models two-way propagation of long waves of small amplitude on the surface of an incompressible, inviscid fluid in a uniform horizontal channel of finite depth. The variables in (1.1) and (1.2) are nondimensional and unscaled: x and t are proportional to position along the channel and time, respectively, and $\eta(x, t)$ and $u(x, t)$ are proportional to the elevation of the free surface above the level of rest $y=0$, and to the horizontal velocity of the fluid at a height $y=-1+(1+\eta(x, t)) / \sqrt{3}$, respectively. (In terms of these variables the bottom of the channel is at $y=-1$.)

[^0]
[^0]: * Corresponding author at: Department of Mathematics, University of Athens, 15784 Zographou, Greece. Tel.: +30 210 7276311; fax: +30 210 7276398.

 E-mail address: doug@math.uoa.gr (V.A. Dougalis).

