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Abstract

A finite volume method for geometries parameterized by Non-Uniform Rational B-Splines (NURBS) is proposed. Since the
computational grid is inherently defined by the knot vectors of the NURBS parameterization, the mesh generation step simplifies
here greatly and furthermore curved boundaries are resolved exactly. Based on the incompressible Navier–Stokes equations, the
main steps of the discretization are presented, with emphasis on the preservation of geometrical and physical properties. Moreover,
the method is combined with a structural solver based on isogeometric finite elements in a partitioned fluid–structure interaction
coupling algorithm that features a gap-free and non-overlapping interface even in the case of non-matching grids.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

In numerical partial differential equations, the role of the geometry description has been mostly neglected or
underestimated for many years. Only recently, with the advent of isogeometric analysis [18], it has been demonstrated
that geometry and numerics may go hand in hand with substantial mutual benefits. In this contribution we discuss the
class of finite volume methods (FVM) from the same perspective and introduce a discretization technique for geometries
parameterized by Non-Uniform Rational B-Splines (NURBS). The discretization is able to preserve free-form surfaces
and is particularly attractive for the combination with an isogeometric solver in fluid–structure interaction problems.

The isogeometric approach extends isoparametric finite elements to more general basis functions such as B-splines
and NURBS [8]. In this way, exact geometries at the coarsest level of discretization are obtained and geometry errors
are eliminated from the very beginning. The resulting discretization still fits into the variational framework of the finite
element method (FEM), and it is possible to equip established FEM codes with isogeometric elements [4].

In computational fluid dynamics, however, the FVM is still the method of choice. It can be interpreted as a discon-
tinuous Galerkin method of lowest order, i.e., with constant approximations in each cell or control volume. A major
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