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Abstract

The paper presents an interpolation scheme for G1 Hermite motion data, i.e., interpolation of data points and rotations at the points,
with spatial quintic Pythagorean-hodograph curves so that the Euler–Rodrigues frame of the curve coincides with the rotations at
the points. The interpolant is expressed in a closed form with three free parameters, which are computed based on minimizing
the rotations of the normal plane vectors around the tangent and on controlling the length of the curve. The proposed choice of
parameters is supported with the asymptotic analysis. The approximation error is of order four and the Euler–Rodrigues frame
differs from the ideal rotation minimizing frame with the order three. The scheme is used for rigid body motions and swept surface
construction.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

To compute an orthonormal frame of a spatial curve r  is an important task in computer animation, motion planning,
swept surface construction, etc. Frames determine an orientation of a rigid body as it traverses the curve. Typically an
adapted frame (f 1, f 2, f 3) is searched for, which has the property that f 1 = ṙ/‖ṙ‖ =  t is a tangent vector, and the
remaining two vectors span the normal plane. A well known adapted frame is the Frenet frame (t, n, b) (see [12]), but
it is often unsuitable for practical applications since it is not defined at inflection points and it incurs an unnecessary
rotation of the normal plane vectors n  and b  around t. The most attractive frame in motion design applications and
swept surface construction is a rotation minimizing frame (RMF frame), which is characterized through a solution of
first-order differential equations (see [11], e.g.). More precisely, there should be no instantaneous rotation of f 2 and
f 3 around f 1 = t. The variation of any adapted frame (f 1, f 2, f 3) along the curve r is determined by the angular
velocity vector ω as

ḟ 1 =  ω  ×  f 1, ḟ 2 =  ω  ×  f 2, ḟ 3 =  ω  ×  f 3.
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