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Abstract

This paper examines a compound collective risk model in which the primary distribution comprised the Poisson–Lindley distri-
bution with a λ  parameter, and where the secondary distribution is an exponential one with a θ  parameter. We consider the case of
dependence between risk profiles (i.e., the parameters λ  and θ), where the dependence is modelled by a Farlie–Gumbel–Morgenstern
family. We analyze the consequences of the dependence on the Bayes premium. We conclude that the consequences of the dependence
on the Bayes premium may vary considerably.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

In actuarial risk theory, the collective risk model is described by a frequency distribution for the number of claims N
and a sequence of independent and identically distributed random variables representing the size of the single claims
Xi. Frequency N  and Severity Xi are assumed to be independent, conditional on distribution parameters. There is an
extensive body of literature on the risk modelling process, see e.g. McNeil et al. [28].

For each likelihood assessment and for each probabilistic modelling of the prior information, a different model is
derived. The most commonly used models are

1. N  has a Poisson distribution [16], Negative Binomial ([17,47]; among others).
2. The claim severity distribution is Exponential [35], Gamma [44], Lognormal [23,3], Pareto and Weibull [9], among

others.

Our interest is focussed on S  = X1 + · ·  ·  + XN which denotes the aggregate losses or the total cost over a period.
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