Original article

A note on computation of pseudospectra

Drahoslava Janovskáa,*, Vladimír Janovský ${ }^{\text {b }}$, Kunio Tanabe ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Institute of Chemical Technology, Technická 5, 16628 Prague 6, Czech Republic
${ }^{\text {b }}$ Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 18675 Prague 8, Czech Republic
${ }^{\text {c }}$ Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-0072, Japan

Received 2 October 2009; received in revised form 13 September 2011; accepted 7 March 2012
Available online 16 March 2012

Abstract

The aim is to contribute to pseudospectra computation via a path following technique. Given a matrix $A \in \mathbb{C}^{n \times n}$, we compute the branch consisting of a fixed singular value ϵ and corresponding left and right singular vectors of the parameter dependent matrix $(x+\mathrm{i} y) I-A$. The fact that the branch corresponds to the smallest singular value $\sigma_{\min }((x+\mathrm{i} y) I-A)=\epsilon$ is sufficient to verify at just one point of the branch due to the continuity argument. We can exploit a standard ready-made software. © 2012 IMACS. Published by Elsevier B.V. All rights reserved.

65 F 15
Keywords: Pseudospectrum; Path following; Continuation

1. Introduction

In applications concerning linear processes represented by a non-normal matrix $A \in \mathbb{C}^{n \times n}$, the classical spectral information may be misleading. Instead, the information concerning ϵ-pseudospectra yields a deeper insight. For the motivation, see e.g. the monograph [16].

Out of equivalent definitions of the pseudospectra we stick to the following one: Let $A \in \mathbb{C}^{n \times n}$. Given $\epsilon>0$,

$$
\begin{equation*}
\Lambda_{\epsilon} \equiv\left\{z \in \mathbb{C}: \sigma_{\min }(z I-A)<\epsilon\right\}, \tag{1}
\end{equation*}
$$

where $\sigma_{\min }(z I-A)$ denotes the smallest singular value of $z I-A$ and I is the identity matrix.
We discuss computing pseudospectra. As the basic computational tool, variants of grid techniques are used:

1. Construct a mesh D in the complex plane \mathbb{C} which envelopes the required part of Λ_{ϵ} for selected values of ϵ.
2. Compute $\sigma_{\min }(z I-A)$ at each grid point $z \in D$.
3. Consider the level sets (2) for the selected values of ϵ. Visualize them as the contour plots on the grid:

$$
\begin{equation*}
\partial \Lambda_{\epsilon}=\left\{z \in \mathbb{C}: \sigma_{\min }(z I-A)=\epsilon\right\} \tag{2}
\end{equation*}
$$

As step 2 is concerned, iterative techniques are recommended: inverse iterations to compute the smallest eigenvalue of $(z I-A)^{*}(z I-A)$ see e.g. [11], or inverse Lanczos iterations which approximate the minimal singular value of

[^0]
[^0]: * Corresponding author. Tel.: +420 731577040; fax: +420 220444477.

 E-mail addresses: janovskd@ @scht.cz (D. Janovská), janovsky@karlin.mff.cuni.cz (V. Janovský), Tanabe.Kunio@waseda.jp (K. Tanabe).

