

Available online at www.sciencedirect.com

Mathematics and Computers in Simulation 82 (2011) 54-67

www.elsevier.com/locate/matcom

Original article

Algorithmic detection of hypercircles

Tomas Recio^a, J. Rafael Sendra^b, Luis Felipe Tabera^{a,*}, Carlos Villarino^b

^a Departamento de Matemáticas, Universidad de Cantabria, 39071 Santander, Spain ^b Departamento de Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares, Spain

Received 23 October 2009; received in revised form 22 June 2010; accepted 19 July 2010 Available online 3 August 2010

Abstract

In the algebraically optimal reparametrization problem, one of the possible approaches deals with computing a parametric variety of Weyl and checking whether this variety is a hypercircle. Here, algorithms to detect whether a curve given parametrically is a hypercircle are provided.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Rational curves; Rational parametrizations; Field of definition; Simplification of parametrizations

1. Introduction

We can think of the real plane as the field of complex numbers \mathbb{C} , an algebraic extension of the reals \mathbb{R} of degree 2. Analogously, we can consider a characteristic zero base field \mathbb{K} and an algebraic extension of degree d, $\mathbb{K}(\alpha)$. Since elements in $\mathbb{K}(\alpha)$ can be expressed uniquely as $a_0 + a_1\alpha + \cdots + a_{d-1}\alpha^{d-1}$, with $a_i \in \mathbb{K}$, $\mathbb{K}(\alpha)$ can be identified with the vector space \mathbb{K}^d , via the base $\{1, \alpha, \ldots, \alpha^{d-1}\}$.

Then, recall that a real circle can be defined as the image (in the real plane, suitably identified with the complex numbers) of the real axis under a Moebius transformation in the complex field. Likewise, and roughly speaking, a *hypercircle* (i.e. a kind of non-standard circle) can be defined as the curve in \mathbb{K}^d that is the image of "the K-axis" under the transformation $(at + b/ct + d) : \mathbb{K}(\alpha) \to \mathbb{K}(\alpha)$ where $ad - bc \neq 0$; we will see later, in Definition 2, that we consider in fact the hypercircle in the *d*-dimensional affine space over the algebraic closure of \mathbb{K} instead of over \mathbb{K} . This type of curves has been introduced in [1] and studied in detail in [4].

For example, if we take $\mathbb{K} = \mathbb{Q}$, let α be such that $\alpha^3 + 2 = 0$, and finally the map $u(t) = (t + \alpha/t - \alpha)$, then u(t) can be written uniquely as $\phi_0(t) + \alpha \phi_1(t) + \alpha^2 \phi_2(t)$, where $\phi_i \in \mathbb{K}(t)$, as $u(t) = (t^3 - 2/2 + t^3) + \alpha(2t^2/2 + t^3) + \alpha^2(2t/2 + t^3)$. The rational functions $\phi_i(t)$ define the following hypercircle in three-dimensional space:

$$\left(\frac{t^3-2}{2+t^3}, \frac{2t^2}{2+t^3}, \frac{2t}{2+t^3}\right)$$

0378-4754/\$36.00 © 2010 IMACS. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.matcom.2010.07.017

^{*} Corresponding author. Fax: +34 942 201 402.

E-mail addresses: tomas.recio@unican.es (T. Recio), rafael.sendra@uah.es (J.R. Sendra), taberalf@unican.es (L.F. Tabera), carlos.villarino@uah.es (C. Villarino).

URLs: http://www.recio.tk (T. Recio), http://www2.uah.es/rsendra/ (J.R. Sendra), http://personales.unican.es/taberalf/ (L.F. Tabera).