Original article

Algorithmic detection of hypercircles

Tomas Recio ${ }^{\text {a }}$, J. Rafael Sendra ${ }^{\text {b }}$, Luis Felipe Tabera ${ }^{\text {a, } *}$, Carlos Villarino ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Cantabria, 39071 Santander, Spain
${ }^{\text {b }}$ Departamento de Matemáticas, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
Received 23 October 2009; received in revised form 22 June 2010; accepted 19 July 2010
Available online 3 August 2010

Abstract

In the algebraically optimal reparametrization problem, one of the possible approaches deals with computing a parametric variety of Weyl and checking whether this variety is a hypercircle. Here, algorithms to detect whether a curve given parametrically is a hypercircle are provided. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Rational curves; Rational parametrizations; Field of definition; Simplification of parametrizations

1. Introduction

We can think of the real plane as the field of complex numbers \mathbb{C}, an algebraic extension of the reals \mathbb{R} of degree 2. Analogously, we can consider a characteristic zero base field \mathbb{K} and an algebraic extension of degree d, $\mathbb{K}(\alpha)$. Since elements in $\mathbb{K}(\alpha)$ can be expressed uniquely as $a_{0}+a_{1} \alpha+\cdots+a_{d-1} \alpha^{d-1}$, with $a_{i} \in \mathbb{K}, \mathbb{K}(\alpha)$ can be identified with the vector space \mathbb{K}^{d}, via the base $\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$.

Then, recall that a real circle can be defined as the image (in the real plane, suitably identified with the complex numbers) of the real axis under a Moebius transformation in the complex field. Likewise, and roughly speaking, a hypercircle (i.e. a kind of non-standard circle) can be defined as the curve in \mathbb{K}^{d} that is the image of "the \mathbb{K}-axis" under the transformation $(\mathfrak{a} t+\mathfrak{b} / \mathfrak{c} t+\mathfrak{d}): \mathbb{K}(\alpha) \rightarrow \mathbb{K}(\alpha)$ where $\mathfrak{a d}-\mathfrak{b} \mathfrak{c} \neq 0$; we will see later, in Definition 2 , that we consider in fact the hypercircle in the d-dimensional affine space over the algebraic closure of \mathbb{K} instead of over \mathbb{K}. This type of curves has been introduced in [1] and studied in detail in [4].

For example, if we take $\mathbb{K}=\mathbb{Q}$, let α be such that $\alpha^{3}+2=0$, and finally the map $u(t)=(t+\alpha / t-\alpha)$, then $u(t)$ can be written uniquely as $\phi_{0}(t)+\alpha \phi_{1}(t)+\alpha^{2} \phi_{2}(t)$, where $\phi_{i} \in \mathbb{K}(t)$, as $u(t)=\left(t^{3}-2 / 2+t^{3}\right)+\alpha\left(2 t^{2} / 2+t^{3}\right)+\alpha^{2}\left(2 t / 2+t^{3}\right)$. The rational functions $\phi_{i}(t)$ define the following hypercircle in three-dimensional space:

$$
\left(\frac{t^{3}-2}{2+t^{3}}, \frac{2 t^{2}}{2+t^{3}}, \frac{2 t}{2+t^{3}}\right)
$$

[^0]
[^0]: * Corresponding author. Fax: +34 942201402.

 E-mail addresses: tomas.recio@unican.es (T. Recio), rafael.sendra@uah.es (J.R. Sendra), taberalf@unican.es (L.F. Tabera), carlos.villarino@uah.es (C. Villarino).

 URLs: http://www.recio.tk (T. Recio), http://www2.uah.es/rsendra/ (J.R. Sendra), http://personales.unican.es/taberalf/ (L.F. Tabera).

