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Abstract

The inverse scattering method for solving the sine-Gordon equation in laboratory coordinates requires the analysis of the
Faddeev-Takhtajan eigenvalue problem. This problem is not self-adjoint and the eigenvalues may lie anywhere in the complex
plane, so it is of interest to determine conditions on the initial data that restrict where the eigenvalues can be. We establish bounds
on the eigenvalues for a broad class of zero-charge initial data that are applicable in the semiclassical or zero-dispersion limit. It is
shown that no point off the coordinate axes or turning point curve can be an eigenvalue if the dispersion parameter is sufficiently
small.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The sine-Gordon equation in laboratory coordinates
ezun — szuxx ~+ sin(u) =0 €))]

is a basic model for a variety of physical systems. When used to model idealized magnetic flux propagation along the
insulating barrier between two superconductors in a Josephson junction, it is appropriate to consider the semiclassical
or zero-dispersion limit as ¢ |, 0 [9]. Specifically, we fix two continuous functions f(x) : R — R and g(x) : R — R,
independent of ¢, and pose the Cauchy problem for (1) with initial data

u(x, 0;6) = f(x), eui(x,0;6) = g(x). @
For physical applications, one can assume

lim f(x)=0, lim f(x) = 2nnforn eZ, lim g(x)=0. 3)
X——00 x——+00 |x]—+00

The number n, which is a constant of motion, is the winding number or topological charge of the solution. We will be
considering the zero-winding or zero-charge case of n=0.

The sine-Gordon equation is solvable by the inverse-scattering method. Each (reasonably well-behaved) set of
Cauchy data characterizes a set of reflection data, consisting of eigenvalues, modified proportionality constants, and
the reflection coefficient. Finding the scattering data from the Cauchy data comprises the forward scattering transform.
The scattering data can then be evolved forward in time, and then in principle the solution to (1) at a later time can
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