

نبریز - ۲۱ ار دسهشت ماه ۱۳۹۶

4nd National Industrial Mathematics Conference Tabriz - 12 May - 2017

Graded Weakly Primary Submodules

M. Ebrahimpour*

Abstract

Let G be an arbitrary group with identity e, R be a commutative ring with $1 \neq 0$ and M be a unitary R-module. Weakly prime ideals and weakly prime submodules have been introduced and studied in [1] and [5], respectively. Here we study the graded weakly primary submodules of a G-graded R-module M. Some properties of graded weakly primary submodules are considered.

13G05.

Keywords: graded ring, graded module, graded submodule, graded weakly primary submodule.

1 **Introduction and preliminaries**

Weakly primary ideals in a commutative ring with non-zero identity have been introduced and studied in [2]. In this paper, we study graded weakly primary submodules of graded modules over graded commutative rings and the structures of their homogeneous components.

Now, we introduce some notations and terminologies. Let G be a group with identity e and Rbe a commutative ring. Then R is a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_{g_1} R_{g_2} \subseteq R_{g_1 g_2}$ for all $g_1, g_2 \in G$. The elements of R_g are called homogeneous of degree g. Let $r \in R$, then r can be written uniquely as $\sum_{g \in G} r_g$, where r_g is the component of r in R_g . We write $h(R) = \bigcup_{g \in G} R_g$. Also, R_e is a subring of R with $1_R \in R_e$.

We consider $suppR = \{g \in G : R_g \neq 0\}$. Let I be an ideal of R. For $g \in G$, let $I_g = I \cap R_g$. Then I is a graded ideal of R if $I = \bigoplus_{g \in G} I_g$. In this case, I_g is called the *g*-component of *I* for $g \in G$.

The graded radical of a graded ideal I of R, denoted by Grad(I), is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. Note that, if r is a homogeneous element of R, then AMS subject Classification 2010: 13A15, 13F05, $r \in Grad(I)$ if and only if $r^n \in I$ for some positive integer n.

> Let I be a graded ideal of R and $x \in G$. The set $xrad(I) = \{a \in R_x : a^n \in I, \text{ for some positive integer n}\}$ is a subgroup of R_x . Clearly, $I_x \subseteq xrad(I)$ and If $r \in R_x$ with $r \in Grad(I)$, then $r \in xrad(I)$.

Let *R* be a *G*-graded ring and *M* be an *R*-module. We say that *M* is a *G*-graded R-module (or graded R-module), if there exist subgroups M_g of M such that $M = \bigoplus_{g \in G} M_g$ (as abelian groups) and $R_{g_1} M_{g_2} \subseteq$ $M_{g_1g_2}$ for all $g_1, g_2 \in G$. We write $h(M) = \bigcup_{g \in G} M_g$ and the elements of h(M) are called homogeneous.

Let $M = \bigoplus_{g \in G} M_g$ be a graded *R*-module and *N* be a submodule of M. Then N is called a graded submodule of M if $N = \bigoplus_{g \in G} N_g$, where $N_g = N \cap$ M_g , for $g \in G$. Also, N_g is called the *g*-component of N. Moreover, $\frac{M}{N}$ is a G-graded R-module with g-component $(\frac{M}{N})_g = \frac{(M_g + N)}{N}$, where $g \in G$, see [3].

A proper graded submodule N of a graded module M is said to be graded prime (resp., graded weakly prime) submodule if whenever $r \in h(R)$ and $m \in h(M)$ together with $rm \in N$ (resp., $0 \neq rm \in$

^{*}Speaker