Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Influence of TiO₂ crystal structure on acrylonitrile decomposition over Ag/TiO₂

Tetsuya Nanba*, Shoichi Masukawa, Junko Uchisawa, Akira Obuchi

National Institute of Advanced Industrial Science and Technology (AIST), Research Center for New Fuels and Vehicle Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan

ARTICLE INFO

Article history: Received 9 November 2011 Received in revised form 5 January 2012 Accepted 6 January 2012 Available online 28 January 2012

Keywords: Acrylonitrile Decomposition Ag TiO₂ Anatase Rutile

1. Introduction

Acrylonitrile (AN) is recognized as a hazardous volatile organic compound (VOC) owing to its carcinogenicity [1]. In oxidative treatment of exhaust gases containing AN, nitrogen oxides $(NO_x = NO + NO_2)$ are formed from the nitrogen atom in AN, even when thermal NO_x formation is suppressed by using a low- NO_x -emission combustor. Therefore, a catalytic purification system that can completely convert AN to harmless CO_2 , H_2O , and N_2 is highly desired.

Gervasini et al. reported that Ba–Cu–Cr/Al₂O₃ combined with ozone can effectively remove AN from exhaust gases [2]. Li et al. reported that a non-noble metal catalyst mixture of La, Ce, Ni, Co, and Mn supported on Al₂O₃ showed higher activity for AN decomposition than did a noble metal catalyst mixture of Pt and Pd [3]. However, those reports focused only on AN conversion, not on product selectivity. We have reported that Ag catalysts exhibit high AN decomposition activity [4], and that this activity is greatly influenced by the type of material used to support Ag, with TiO₂ being an effective support [5]. The Ag supported on TiO_2 in our reports was composed of both metallic and oxidized species. The metallic Ag exhibited high AN oxidation activity, whereas the oxidized Ag exhibited high AN hydrolysis activity. We speculated that the reaction pathway of AN decomposition begins with hydrolysis of AN to form NH₃ over oxidized Ag, followed by NH₃ oxidation over metallic Ag. One of the controlling factors influencing these

ABSTRACT

The catalytic decomposition of acrylonitrile over Ag supported on different crystal phases of TiO_2 was studied. Ag/ TiO_2 containing anatase TiO_2 exhibited high NH₃ and N₂ selectivity at low and high temperatures, respectively, whereas Ag/ TiO_2 composed of only rutile TiO_2 exhibited medium N₂ and high NO_x selectivity at low and high temperatures, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction by H₂ revealed that the anatase phase favors the formation of ionic Ag, whereas the rutile phase favors that of metallic Ag. We concluded that product selectivity in acrylonitrile decomposition was influenced by the oxidation state of Ag, which was in turn affected by the crystal phase of TiO_2 .

© 2012 Elsevier B.V. All rights reserved.

catalysts' selectivity toward $N_{\rm 2}$ formation is the ratio of oxidized and metallic Ag.

In this study, we investigated the effects of two crystal structures of TiO_2 , anatase and rutile, on the chemical and physical states of Ag supported on the TiO_2 . The observed TiO_2 -induced changes in Ag consequently influenced product selectivity in Ag/ TiO_2 -catalyzed AN decomposition, as shown herein.

2. Experimental

2.1. Catalyst preparation

Ag/TiO₂ was prepared by means of incipient wetness method using AgNO₃ as a precursor (Wako Pure Chemical Industries), which was loaded onto the TiO₂ supports at 5 wt% Ag. Four types of TiO₂ supports were employed: anatase with a high surface area (CS-300S-12; Sakai Chemical Industry Co. Ltd., 74 m²/g), anatase with a low surface area (Wako Pure Chemical Industries, 9 m²/g), a mixture of anatase and rutile (P25; Nippon-Aerosil, 47 m²/g), and rutile prepared by calcination of P25 at 900 °C for 4 h (resulting in a surface area of 5 m²/g). We abbreviate these supports as TiO₂(HA), TiO₂(LA), TiO₂(AR), and TiO₂(R), respectively. After loading the supports with Ag, the samples were calcined at 500 °C for 4 h.

2.2. Catalyst characterization

The Brunauer–Emmett–Teller (BET) specific surface area and pore size distribution of each sample were measured by an N_2 adsorption isotherm (BEL Japan Inc., BELSORP18). X-ray powder diffraction (XRD) patterns were measured with a Rigaku RU-300

^{*} Corresponding author. Tel.: +81 29 861 8717; fax: +81 29 861 8259. *E-mail address:* tty-namba@aist.go.jp (T. Nanba).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2012.01.009