

Synthesis of noble-metal doped tin dioxide nanohybrid and its application in the chemiresistive sensors Shiva Navazani¹, Mostafa Hassanisadi², Ali Shokufar³, Mojtaba Askarieh⁴

Abstract

 SnO_2 quantum dots and doped SnO_2 nanohybrid were synthesized and evaluated as chemiresistive gas sensors for methane detection at moderate temperatures. SnO_2 -QDs were synthesized through one pot hydrothermal method and doped with noble metal catalyst. The sensors response to 1000ppm CH₄ were measured at the temperature range of 100-300°C. Our experiments demonstrated that presence of the dopants increased the response of SnO_2 -QD sensor toward methane gas from 12.5% to 52% at 200°C. On the other hand, sensing optimum operating temperature for methane, reduced from 300°C for SnO_2 -QD to 200°C for the hybrid SnO_2 ; addition of the catalysts improved the sensing characteristics of gas sensor and the device could operate at lower temperatures. The nanostructured hybrid materials were characterized by X-ray diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM).

Keywords: SnO₂, sensor, chemiresistive, noble-metal doped tin dioxide

¹ PhD student of materials science and engineering

² Assistant professor of analytical chemistry, Nanotechnology research center, Research institute of petroleum industry, Tehran, Iran, mhsaadi@ripi.ir

³ Professor of materials science and engineering, Advanced materials and nanotechnology lab, KNTU, Tehran, Iran, shokuhfar@knt.ac.ir

⁴ Msc of chemical engineering, Nanotechnology research center, Research institute of petroleum industry, Tehran, Iran, m.ask@aol.com