Corrosion Resistance and Hardness Properties of Electrodeposited Ni-Fe Composite Coatings Containing Al₂O₃-TiO₂ Particles

Parvaneh Farshbaf¹, Farzad Habibi², Mahnaz Yaghoobi ³, Naghi Parvini Ahmadi⁴

Abstract

Electrodeposited Ni-Fe composite coatings containing ceramic particles have been investigated due to their improved mechanical and corrosion resistant properties over plain Ni-Fe alloy coatings. In the present study, Ni-Fe/Al₂O₃-TiO₂ coatings have been electrodeposited using physically mixed commercial Al₂O₃ and TiO₂ powders with different powder compositions of 80 TiO₂-20Al₂O₃, 50 TiO₂-50Al₂O₃, and 20 TiO₂-80 Al₂O₃. The effect of composition on the properties of the coatings was examined. Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to analyze the surface morphology and chemical composition of coatings. X-Ray Diffraction analysis was used to determine the crystalline structure of the coatings. The electrochemical behavior of coatings was studied by polarization test in 3.5 wt-% NaCl solution. Finally, the hardness of the prepared coatings was measured by Vickers microhardness testing instrument. Results revealed that increase in TiO₂ reinforcement particles increased the hardness and corrosion resistance of the composite coatings.

Keywords: Electrodeposition, composite, Al₂O₃, TiO₂, FESEM, corrosion

¹- PhD candidate of Materials Science and Engineering, Sahand University of technology, Parvaneh.farshbaf@gmail.com

²- PhD candidate of Materials Science and Engineering, Sahand University of technology, Farzad.habibi.a@gmail.com

³⁻ PhD candidate of Materials Science and Engineering, Sahand University of technology, Mahnazyagoobi@gmail.com

^{4 -} Professor of Materials Science, Sahand University of Technology, Parvini@sut.ac.ir