MATHEMATICS

Parabolic equations with double variable nonlinearities

S. Antontsev ${ }^{\text {a, }}$, S. Shmarev ${ }^{\text {b,*,2 }}$
${ }^{\text {a }}$ CMAF, University of Lisbon, Portugal
${ }^{\mathrm{b}}$ Department of Mathematics, University of Oviedo, Spain
Received 15 November 2009; received in revised form 26 May 2010; accepted 7 December 2010
Available online 21 December 2010

Abstract

The paper is devoted to the study of the homogeneous Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions: $$
u_{t}=\operatorname{div}\left(a(x, t, u)|u|^{\alpha(x, t)}|\nabla u|^{p(x, t)-2} \nabla u\right)+f(x, t)
$$ with given variable exponents $\alpha(x, t)$ and $p(x, t)$. We establish conditions on the data which guarantee the existence of bounded weak solutions in suitable Sobolev-Orlicz spaces.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
MSC: 35K57; 35K65; 35B40
Keywords: Parabolic equation; Double nonlinearity; Variable nonlinearity; Nonstandard growth conditions

1. Introduction

We study the Dirichlet problem for the doubly nonlinear parabolic equation

$$
\left\{\begin{array}{l}
u_{t}=\operatorname{div}\left(a(z, u)|u|^{\alpha(z)}|\nabla u|^{p(z)-2} \nabla u\right)+f(z) \quad z=(x, t) \in Q=\Omega \times(0, T], \tag{1.1}\\
u(x, 0)=u_{0}(x) \text { in } \Omega, \quad u=0 \quad \text { on } \Gamma=\partial \Omega \times[0, T]
\end{array}\right.
$$

Eq. (1.1) is formally parabolic, but it may degenerate or become singular at the points where $u=0$ or $|\nabla u|=0$. Introducing the functions

$$
\begin{equation*}
\gamma(z)=\frac{\alpha(z)}{p(z)-1}, \quad v(z)=\int_{0}^{u}|s|^{\gamma(z)} d s=\frac{u|u|^{\gamma(z)}}{\gamma(z)+1}, \quad u(z)=\Phi_{0}(z, v)=\frac{|v|^{\frac{-\gamma}{1+\gamma}} v}{(1+\gamma)^{\frac{1}{1+\gamma}}}, \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author.

 E-mail address: shmarev@orion.ciencias.uniovi.es (S. Shmarev).
 ${ }^{1}$ The author was partially supported by FCT, Financiamento Base 2008-ISFL-1-209, Portugal, and by the research project MTM2008-06208 of the Ministerio de Ciencia e Innovacion, Spain.
 ${ }^{2}$ The author acknowledges the support of the research project MTM2007-65088, Spain.

