Original article

Saturation in multivariate simultaneous approximation

D. Cárdenas-Morales ${ }^{\text {a }}$, A. Fraguela ${ }^{\text {b }}$, P. Garrancho ${ }^{\text {a,* }}$
${ }^{a}$ Departamento de Matemáticas, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
${ }^{\mathrm{b}}$ Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 sur San Manuel CU., 72570 Puebla, Pue., Mexico

Received 15 November 2009; received in revised form 26 November 2010; accepted 7 December 2010
Available online 21 December 2010

Abstract

In this paper we present a new result on the saturation of sequences of linear operators in a multivariate and simultaneous setting. Specifically, a small o saturation result is obtained for the partial derivatives of the classical Bernstein bivariate operators on the unit simplex. Solutions of boundary value problems for certain partial differential equations of elliptic type play an important role. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Saturation; Bivariate Bernstein polynomials; Shape preserving property; Asymptotic formula

1. Introduction

Given $n \in \mathbb{N}=\{1,2, \ldots\}$, the Bernstein polynomial of order n on the simplex $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; x_{1}, x_{2} \geq 0, x_{1}+\right.$ $\left.x_{2} \leq 1\right\}$ is given for $f \in C(S)$ and $x=\left(x_{1}, x_{2}\right) \in S$ by

$$
\begin{equation*}
B_{n} f(x)=\sum_{k=0}^{n} \sum_{l=0}^{n-k}\binom{n}{k}\binom{n-k}{l} x_{1}^{k} x_{2}^{l}\left(1-x_{1}-x_{2}\right)^{n-k-l} f\left(\frac{k}{n}, \frac{l}{n}\right) \tag{1}
\end{equation*}
$$

$C(S)$ being the usual space of all continuous functions defined on S endowed with the sup-norm.
Many properties of B_{n} are very well-known. Among them, if for $x \in S$ we denote $p_{i}(x)=x_{i}, i=1,2$, one has that

$$
\begin{equation*}
B_{n} 1=1, \quad B_{n} p_{i}=p_{i}, \quad B_{n} p_{i}^{2}=\frac{1}{n} p_{i}+\frac{n-1}{n} p_{i}^{2}, \quad i=1,2, \tag{2}
\end{equation*}
$$

from which one deduces the limit $\left|B_{n} f-f\right|_{C(S)} \rightarrow 0$ as $n \rightarrow \infty$. Further properties on the convergence of this approximation process can be consulted in [7,1]. On the other hand, the determination of the class of functions for which the optimal rate of approximation is achieved, that is, $\left|B_{n} f-f\right|_{C(S)}=O(1 / n)$ was completely solved in [5]. As for the optimal rate $O(1 / n)$ Micchelli [9] had proved earlier that $\left|B_{n} f-f\right|_{C(S)}=o(1 / n)$ implies that f is linear, and for the local result Ditzian [4] had proved that if $B_{n} f(x)-f(x)=o_{x}(1 / n)$ for all x in some open ball interior to S, then f is there a solution of the elliptic partial differential equation

$$
\begin{equation*}
D u:=p_{1}\left(1-p_{1}\right) D^{(2,0)} u+p_{2}\left(1-p_{2}\right) D^{(0,2)} u-2 p_{1} p_{2} D^{(1,1)} u=0 \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author. Tel.: +34 953211934; fax: +34 953211871.

 E-mail addresses: cardenas@ujaen.es (D. Cárdenas-Morales), fraguela@fcfm.buap.mx (A. Fraguela), pgarran@ujaen.es (P. Garrancho).

