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This paper deals with the steady flow and heat transfer of a viscous incompressible power-law fluid over a
rotating infinite disk. Assumed the thermal conductivity follows the same function as the viscosity, the
governing equations in the boundary layer are transformed into a set of ordinary differential equations by
generalized Karman similarity transformation. The corresponding nonlinear two-point boundary value
problemwas solved bymulti-shootingmethod. Numerical results indicated that the parameters of power-law
index and Prandtl number have significant effects on velocity and temperature fields. The thickness of the
boundary layer decays with power-law index. The peak of the radial velocity changes slightly with power- law
index. The values near the boundary are affected dramatically by the thickness of the boundary layer.With the
increasing of the Prandtl number the heat conducts more strongly.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible fluid flow and heat transfer over rotating
bodies have many applications and have been studied in many
industrial, geothermal, geophysical, technological and engineering.
For the complex of real machine, this type of flow can be modeled
by the rotating disk system. The steady flow of Newtonian fluid
over rotating disk was first discussed by von Karman in 1921 [1].
Von Karman introduced an elegant transformation reduced the
Navier–Stokes equations to a set of ordinary differential equations
(ODEs), and obtained an approximate solution to the ODEs using
momentum integral method. In 1934, Cochran [2] calculated more
accurate values by numerical integration of the ODEs. In 1960
Rogers and Lance [3] and in 1966 Benton [4] obtained improved
solutions. The problem of heat transfer over a rotating disk main-
tained at a constant temperature was first considered by Millsaps
and Pohlhausen [5] with a variety of Prandtl numbers in the range of
0.5b(cv/cp)Prb10 in 1952. Sparrow and Gregg [6] obtained the
results for all Prandtl numbers in 1959. Considerable attentions have
been devoted to the flow and heat transfer over rotating disk near
Newtonian fluid. The review of Zandbergen and Dijkstra [7] provides
a useful survey.

Non-Newtonian fluid is more familiar and significant. Some
examples are polymer solutions and melts, rubber, grease and
blood. Attia [8] and Sahoo [9] and Osalusi [10] provided some
researches about the Reiner–Rivlin model. Rashaida [11] studied the
flow of the Bingham fluid. A large number of fluids exhibit shear

thinning and shear thickening characteristics, which are called
power-law fluid. In 1964 Mitschka [12] generalized the Von Karman's
similarity transformation to power-law fluid. In 2001 Andersson [13]
analyzed the flow in the boundary layer of the power-law fluid
systematically and extended the power-law index to 1.5≤n≤2.0.

In this paper, the steady flow and heat transfer of power-law fluid
over a free rotating disk are considered. On the assumption that the
thermal conductivity depends on the flow field, the coupled
governing equations are transformed into ODEs in the boundary
layer. Multi-shooting method is applied to solve the ODEs.

2. Physical model and mathematic equations

Let us consider the laminar flow driven by an infinite disk
rotating steadily with angular velocity Ω about the z-axis. The fluid
occupies the infinite region on one side of the disk. There are no-slid
and impermeability on the disk. The disk maintains constant tem-
perature Tw and the fluid out of the boundary layer keeps at a
uniform temperature T∞. The flow is steady and axial-symmetric.
The cylindrical polar coordinate system is (r,φ,z), physical model is
shown in Fig. 1.

From the momentum balance in the axial direction Andersson and
Korte and Meland derived ∂p/∂z=0 in the boundary layer. Von
Karman's original similarity transformation implies ∂p/∂r=0. So the
pressure is considered as constant in the boundary layer. The
governing equations are

∂u
∂r +

u
r
+

∂w
∂z = 0 ð1Þ
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