

ORIGINAL PAPER

Pigmentary properties of rutile TiO₂ modified with cerium, phosphorus, potassium, and aluminium

Marta Gleń*, Barbara Grzmil

Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland

Received 9 November 2012; Revised 28 January 2013; Accepted 13 February 2013

The influence of different modifiers, phosphorus, potassium, aluminium, and cerium on the pigmentary properties of ${\rm TiO_2}$ was studied. The phase composition and distribution of modifiers in prepared ${\rm TiO_2}$ products was investigated using XRD analysis, the selective leaching method, and ICP–AES technique. The optical properties, photoactivity, morphology, and surface area of modified ${\rm TiO_2}$ were determined by spectrophotometric, fluorescent, SEM, and BET measurements. The research was directed towards obtaining a pigmentary ${\rm TiO_2}$ with the highest possible photostability. It was found that the final calcination temperature, at which the anatase–rutile transformation rate was > 97 %, depended on the kind and amount of the modifiers introduced into hydrated titanium dioxide. In comparing the colour of ${\rm TiO_2}$ products modified with Ce, it was found that the addition of K to the ${\rm TiO_2}$ series caused an increase in all the optical properties examined. The presence of K and Al in ${\rm TiO_2}$ modified with Ce resulted in decreased photocatalytic activity. The photostability of ${\rm TiO_2}$ modified with Ce and K improved with an increase in ${\rm P_2O_5}$ content. The highest photostability was measured for the ${\rm TiO_2}$ –CePKAl series. It was concluded that the differences in both the optical properties and photoactivity of ${\rm TiO_2}$ depended on its phase composition and the distribution of modifiers in the products obtained.

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Keywords: titanium dioxide, modification, photostability, optical properties, pigmentary properties

Introduction

In nature, titanium dioxide crystallises in three forms of brookite, anatase, and rutile (Diebold, 2003). Brookite is difficult to obtain, hence has no value in the TiO₂ industry (Bellussi et al., 2002). Anatase is a superior photocatalytic material for air and water purification, water disinfection, and hazardous waste remediation; it is applied to thin films and batteries (Fu et al., 2006; Li et al., 2011). Rutile is the most widely used white pigment nowadays (Woditsch & Westerhaus, 1993; Tayade et al., 2007). Inorganic TiO₂ pigments have applications in a variety of products including paints, inks, plastics, paper, rubber, ceramics, enamels, textiles, food, glasses, and pharmaceuticals (Lewis, 1988; Rao & Reddy, 2007). It is

worth noting that the increase in demand for ${\rm TiO_2}$ pigments in Europe is estimated at 3 % per year, while in Asia double-digit rates are projected. Global ${\rm TiO_2}$ pigment consumption increased by 9 % in 2010 (Elsevier, 2011).

The more compact structure of rutile in comparison with anatase affords the differences between these two forms. Rutile is the most thermodynamically stable form of the TiO_2 polymorphs. In addition, rutile possesses greater brightness, hiding power, tinting strength, whitening ability, and opacity (Dąbrowski et al., 2006; Reidy et al., 2006). As a consequence, this form of titanium dioxide is preferred in the pigment industry for its outstanding optical properties. The colour of TiO_2 is decisive for its optical performance since the titanium dioxide pigment is used in a wide

^{*}Corresponding author, e-mail: mglen@zut.edu.pl