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Abstract We study the effects of the generalized uncer-
tainty principle in the tunneling formalism for Hawking ra-
diation to evaluate the quantum-corrected Hawking temper-
ature and entropy for a Kerr black hole. By assumption
of a spatially flat universe accompanied with expansion of
metric, the modified area and entropy of Kerr black hole
are calculated and we could obtain an expression for en-
tropy of black hole that is changing with respect to time and
Bekenstein-Hawking temperature.
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1 Introduction

Consider the line element of a Kerr black hole in the accel-
erated expanding universe that describes the metric of its
expansion (Perlmutter et al. 1999; Garnavich et al. 1998;
Riess et al. 1998)
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where rs = 2GM/c2, α = J/Mc, ρ2 = r2 + α2 cos2 θ and
� = r2 − rsr + α2. Also, k denotes the curvature of space
k = 0,1,−1 for flat, closed and open universe respectively
and H is the Hubble parameter, where H = ȧ/a. We select
k = 0 which means that our universe is flat. The Kerr metric,
like Schwarzschild’s, has an event horizon that is spherical
in shape, and its surface area A is given by choosing � = 1
and G = 1

A = 4π
(
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whereas its radiuses are given by
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where rg = 2GM/c2. We notice that the area A differs from
the Euclidean formula, and this is due to the fact that the
geometry of the black hole is non-Euclidean. However, since
r− < r+, the outside observer is concerned only with r+.

In considering the energy that could be released by in-
teraction with black holes, Stephen Hawking discovered an
important theorem in 1971. This, the area theorem, states
that in the interactions involving black holes, the total sur-
face area of the event horizon of a black hole can never de-
crease (in the absence of quantum effects); it can, at the best,
remains unchanged. Now let us use this area theorem to es-
timate the energy extraction limits. For an uncharged Kerr
black hole, the horizon area A is
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which can be calculated from the Kerr space-time met-
ric.This reduces to the area of a Schwarzschild black hole
A = 16πG2M2/c4 that is the largest. For a maximally ro-
tating Kerr black hole J = GM2/c, and A = 8πG2M2/c4.
In Wentzel-Kramers-Brillouin (WKB) approximation, it can
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