miR-141 suppresses proliferation and motility of gastric cancer cells by targeting HDGF

Bitao Chen · Tao Huang · Jun Jiang · Lei Lv · Hongxing Li · Shitao Xia

Received: 24 September 2013/Accepted: 15 November 2013 © Springer Science+Business Media New York 2013

Abstract miR-141 belongs to the miR-200 family, and has been found to be associated with numerous human malignancies; however, its role in gastric cancer (GC) has not been examined in detail. Here, we validated that miR-141 was decreased in GC tissues and cell lines. Forced expression of miR-141 significantly repressed GC cell proliferation and colony formation. Furthermore, miR-141 suppressed in vitro migration and invasion of GC cells. Hepatoma-derived growth factor (HDGF) was confirmed to be a direct target of miR-141 in GC cells. The suppressive effects of miR-141 on GC cell proliferation, colony formation, in vitro migration, and invasion were partially mediated by suppressing HDGF expression. Moreover, the expression of HDGF was negatively correlated with miR-141 in GC tissues. Our data suggest that miR-141 might be associated and plays essential role in GC progression.

Keywords miR-141 · Gastric cancer · HDGF · Proliferation · Migration · Invasion

B. Chen · H. Li · S. Xia Department of Gastroenterology, The No.1 People's Hospital of Jingmen, Jingmen 448000, China

T. Huang (⊠) · L. Lv Department of Urology, Wuhan No,1 Hospital, Huazhong University of Science and Technology, Wuhan 430033, China e-mail: harry_huangt@163.com

J. Jiang

Department of Oncology, The Central Hospital of Wuhan, Wuhan 430014, China

Introduction

Gastric cancer (GC) is one of the most frequent cancers and the second most frequent malignancy of cancer-related death worldwide, especially in East Asia. Approximately 1 million new patients have been diagnosed with GC worldwide each year, accounting for nearly 10 % of all cancer-related death and claiming approximately 700,000 lives annually [1]. GC is a complex genetic disease, and several genes, including oncogenes or tumor suppressors related to the initiation and progression of GC, have been identified [2, 3]. But the common molecular mechanisms of GC remain to be elucidated.

Recently, increasing evidence suggests that a new class of RNAs, known as microRNAs (miRNAs), could regulate various target genes, including oncogenes and tumor suppressor [4, 5]. miRNAs are small noncoding RNAs, which bind to the complimentary motifs in the 3'-untranslated region (3'-UTR) of target mRNA, leading to target mRNA degradation or translational suppression [6]. miRNAs play critical roles in the regulation of biological and pathological processes, such as cell proliferation, migration, invasion, and apoptosis [7]. miRNAs involved in the progression of GC have been widely explored [8, 9]. Many studies have identified a variety of miRNAs aberrantly expressed in GC [10]. Among them, miR-141 was significantly decreased [11]. However, the detailed role of miR-141 in GC is still poorly understood.

In the present study, we validated that miR-141 was substantially decreased and forced expression of miR-141 significantly inhibited proliferation, migration, and invasion of GC cells. Furthermore, we found that miR-141 directly targeted HDGF (hepatoma-derived growth factor, a potential oncogene), and HDGF overexpression could partially attenuate the suppressive effect of miR-141 in GC