RESEARCH PAPER

Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device

Yutao Lu•Taotao Fu•Chunying Zhu• Youguang Ma•Huai Z. Li

Received: 17 June 2013/Accepted: 13 October 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of $600 \times 600 \ \mu\text{m}$. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (r_0) with the remaining time until pinch-off (τ) can be scaled by a power-law relationship: $r_0 \propto \tau^{\alpha}$. Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent α approaches to 0.33 with the increase in the liquid flow rate Q_1 . In the free pinch-off stage, the value of α is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of Q_1 .

Keywords Microfluidics · Multiphase flow · Nonlinear dynamics · Interface · Confinement · Pinch-off

Y. Lu · T. Fu (⊠) · C. Zhu · Y. Ma (⊠) State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China e-mail: ttfu@tju.edu.cn

Y. Ma e-mail: ygma@tju.edu.cn

H. Z. Li

Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France

List of symbols

- *p* Capillary pressure, Pa
- Q_1 Liquid volumetric flow rate, mL h⁻¹
- $Q_{\rm g}$ Gas volumetric flow rate, mL h⁻¹
- $Q_{\rm F}$ Liquid volumetric flow rate through the flowfocusing region, mL h⁻¹
- $Q_{\rm N}$ Liquid volumetric flow rate calculated from the pictures, mL h⁻¹
- r Radius of the bubble neck, μm
- r_0 Minimum radial radius of the neck, μm
- $r_{\rm c}$ Minimum axial radius of the neck, μ m
- t Neck collapse time, μs
- t_c Moment of bubble pinch-off, μs
- t_{cap} Capillary time, μs
- $V_{\rm N}$ Volume of the neck, mL
- $w_{\rm b}$ Width of the bubble neck, μm
- $w_{\rm d}$ Depth of the channel, μm

Greek letters

- α Exponent for radial curvature
- β Exponent for axial curvature
- λ Slenderness of the neck (r_c/r_0)
- η Viscosity, m Pa s
- ρ Density, kg m⁻³
- σ Surface tension, m N m⁻¹
- τ Remaining time to pinch-off, μs

Dimensionless groups

- *Ca* Capillary number $(u\eta_l/\sigma)$
- *Re* Reynold number $(\rho_1 r_0 r_0 / \eta_1)$
- We Weber number $(\rho r_0 (r_0)^2 / \sigma)$

Subscripts

- c Critical time for bubble pinch-off
- cap Capillary time
- F Flow-focusing region