International Journal of New Chemistry, 2015, 1 (4), 189-198. Published online January 2015 in http://www.ijnc.ir/. Original Article

Computational study of Chemical properties in fullerene Derivatives of Enalapril drug

Roya Ahmadi, Alireza rezaie asl

Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

*Corresponding Author e-mail Address: roya.ahmadi.chem@hotmail.com

Received 3 April 2014; Accepted 4 May2015; Published 19 June 2015

Abstract

In this research at the first Enalapril drug and its fullerene derivative were optimized. NBO calculations and NMR for the complexes were carried out at the B3LYP/6-31G* quantum chemistry level. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO, chemical potential (μ), chemical hardness (η), the coefficients of hybrid bonds (π , σ) and the orbital portion of the bonds p (π , σ) was performed. In another part, the valence electrons of atoms were compared, this drug as a major therapeutic category is Antihypertensive drug. In this study of fullerenes, we used nano drug carriers. The data in tables and graphs and shapes were compared and discussed.

Keywords: Enalapril, fullerenes, chemical potential, nano drug carriers.

1. Introduction

Nanostructures can be categorized into following forms according to their structures: diamonds with sp³ hybridization, Graphite with sp² hybridization, Hexagonal diamonds with sp³ hybridization, fullerenes with SP² hybridization, Nanoparticles, Graphene, single-layer and multi-layer nanotubes, Crystal Nanostructures.

Submit the manuscript to www.ijnc.ir