

ISSN: 2383-188X

International Journal of New Chemistry

Pyrrole detection by BeO nanotube: DFT studies

Ali Akbar Salari¹, Maryam Ebrahimikia², Nastaran Ahmadaghaei¹, Behnaz Dehdari¹, Maziar Noei³

¹Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

²Department of Chemistry, College of chemistry, MalekAshtar University of Technology

³Department of Chemistry, College of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

Received: 20October 2014; Accepted: 10 November 2014

Abstract:

Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C_4H_5N) molecule by using density functional theory (DFT) calculations at the $B_3LYP/6-31(d)$ level, and it was found that the adsorption energy (E_{ad}) of pyrrole on the pristine nanotubes is a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorption energy changed. Calculation showed that when the nanotube is doping by P, the adsorption energy is about -29.04kcal/mol and also the amount of HOMO/LUMO energy gap (E_g) will reduce significantly. Beryllium oxide nanotube is not suitable adsorbent for pyrrole, but when the BeONT doped by P atom the amount of E_g was less than pristine BeONT and that is a suitable semiconductor.

Keywords, Nanotube, DFT, pyrrole, Sensor

(*) Corresponding Author:e-mail: Maziar.Noei@hotmail.com