International Journal of New Chemistry, 2015, 2 (5), 172-178. Published online January 2015 in <u>http://www.ijnc.ir/.</u> Original Article

Online ISSN 2383-188X Open Access

Study of B₁₂N₁₂ and AlB₁₁N₁₂ fullerene as H₂S absorbent and sensor by computational method

KhadijehKalateh^{*}, Arezou Abdolmanafi

Department of Chemistry, College of chemistry, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

^{*}Corresponding Author e-mail Address: kalateh@gmail.com Received 3 April 2014; Accepted 4 May2015; Published 19 June 2015

Abstract

The absorption of the H₂S on the small boron nitride fullerene ($B_{12}N_{12}$) and its Al-inserted analog was theoretically analyzed by density functional theory. The structural stability was based on the minimum energy and non-complex vibrational frequencies. Different sites and orientations of H₂S, using the monomer unit, were considered. Compared with the weak physisorption on the pristine $B_{12}N_{12}$, the H₂S molecule presents strong physisorption on both Al-inserted fullerene, as indicated by the calculated geometrical structures and electronic properties for these systems. It is suggested that the Al-inserted $B_{12}N_{12}$ presents high sensitivity to H₂S. Based on calculated results, the Al-inserted $B_{12}N_{12}$ is expected to be a potential novel sensor for detecting the presence of H₂S.

Keywords: Hydrogen Sulfide, Boron Nitride Fullerene, $B_{12}N_{12}$, Al-inserted, Density Functional Theory Calculations