Description of yield surface evolution using a convected plasticity model

Han-Chin Wu, Hong-Ki Hong

Article history:
Received 9 February 2011
Received in revised form 25 March 2011
Available online 22 April 2011

Keywords:
Evolution of yield surface
Rotation of yield surface
Hoop-axial–torsional stress space
Convected plasticity model

1. Introduction

It is well-known that the evolution of yield surface includes isotropic expansion or contraction, translation, and distortion of the yield surface. However, in a recent experimental study of our laboratory at National Taiwan University, we found that the rotation of subsequent yield surface was also an important feature of yield surface evolution (Sung et al., 2011). Rotation of yield surface had been previously observed and reported in the literature. But, they were all related to non-proportional paths, including segments of straight lines, in the two-dimensional stress space. In our experiments, we observed yield surface rotations in the three-dimensional stress space even in the cases of proportional loading paths. This effect has never been reported in the literature.

We conducted experiments in the three-dimensional stress space by applying combined axial force, torque, and internal pressure to thin-walled tubular specimens. Denoting the axial direction by z and the circumferential direction by l, the axial normal stress is denoted by σ_{zz}, the hoop stress by σ_{ll}, and the shear stress by σ_{zz}. In the experiments, the yield surfaces were determined based on an equivalent offset strain of 17.68%. We found that with torsional pre-strains the yield ellipsoid rotated clockwise about the σ_{zz} axis, but, with reversed torsional pre-strains, the yield ellipsoid rotated in a reversed direction about the σ_{zz} axis. On the other hand, when the specimens were subjected to axial pre-strains, yield ellipsoids did not rotate. Therefore, the rotational behavior of yield surface is pre-strain path dependent and a constitutive model of plasticity should include a way to account for rotation of the yield surface.

Most researchers use models of plasticity referred to space-fixed Cartesian coordinate system (The Eulerian formulation). In this formulation, the infinitesimal element under consideration is space-fixed, and materials flow in and out of the element. The constitutive equations of this case include yield function, flow rule, hardening rules, and loading/unloading condition. The hardening rules can include rules for isotropic hardening, kinematic hardening, and/or distortion. A way of accounting for the rotation of yield surface was proposed by Kurtyka and Zyczkowski (1985, 1988, 1996). Considering Ilyshin’s five dimensional space, these authors used a moving system of coordinates translated and rotated with respect to the original system. There were 25 quantities in the rotation tensor with only ten of them being independent. This rotation tensor could be applied to any non-proportional loading, but, only two-dimensional cases were considered in the examples. This approach was subsequently applied by Vincent et al. (2004). Using a different approach, Dafalias (2000) proposed the notion of plastic spin as a constitutive ingredient necessary to address the question of the rotation of anisotropic axes. Following this approach, anisotropy axes were related by Choi et al. (2006) to the constitutive spin by a co-rotation rate. In this way, the rotational hardening could change the anisotropy axes of the yield function. The theory was applied to the two-dimensional stress space. Other studies of non-proportional loading in the two-dimensional stress space were carried out by Yoon et al. (1995), Losilla and Tourabi (2004) and Rousselier et al. (2009, 2010). No examples using the aforementioned two approaches have been found in the literature that...