Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells

Liping Huanga,⇑, Tianchi Lia, Chuan Liua, Xie Quana,⇑, Lijie Chenb, Aijie Wanga, Guohua Chenda

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
bSchool of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
cState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
dDepartment of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

Article info
Article history:
Received 19 August 2012
Received in revised form 28 October 2012
Accepted 1 November 2012
Available online 12 November 2012

Keywords:
Cobalt leaching
Lithium cobalt oxide
Microbial fuel cell
Cathodic reduction

Abstract
Cobalt leaching from lithium cobalt oxide is a promising reduction process for recovery of cobalt and recycle of spent lithium ion batteries, but suffers from consumption of large amount of reductants and energy, and generation of excess secondary polluted sludge. Thus, effective and environmental friendly processes are needed to improve the existing process limitations. Here we reported microbial fuel cells (MFCs) to effectively reduce Co(III) in lithium cobalt oxide with concomitant energy generation. There was a synergetic interaction in MFCs, leading to a more rapid Co(III) leaching at a rate 3.4 times the sum of rates by conventional chemical processes and no-acid controls. External resistor, solid/liquid ratio, solution conductivity, pH and temperature affected system performance. This study provides a new process for recovery of cobalt and recycle of spent lithium ion batteries with concomitant energy generation from MFCs.

1. Introduction

The decline of valuable metal resources, together with the increased future valuable metals demand gives an impetus for increased metal recovery from wastes such as fly ash, sewage sludge, spent batteries and electronic scrap materials, as well as the hydroprocessing catalysts (Marafi and Stanislaus, 2008). Lithium cobalt oxide (LiCoO2) is the most commonly used cathode material in lithium ion batteries, which have been extensively