

Contents lists available at SciVerse ScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering Aspects

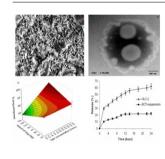
journal homepage: www.elsevier.com/locate/colsurfa

Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: Physicochemical investigations

Dipak D. Kumbhar, Varsha B. Pokharkar*

Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411 038, Maharashtra, India

HIGHLIGHTS


G R A P H I C A L A B S T R A C T

- We developed a nanostructured lipid carrier (NLC) for the poorly watersoluble drug, bicalutamide (BCT).
- BCT phase transition occurred during the NLC processing and was subsequently studied by DSC, PXRD and Raman analysis.
- ► The presence of hydrophilic surfactants was significant to modulate BCT release from NLC.
- Developed NLC showed potential to entrap the poorly water-soluble BCT and revealed good stability for six months.

ARTICLE INFO

Article history: Received 13 July 2012 Received in revised form 14 October 2012 Accepted 18 October 2012 Available online 26 October 2012

Keywords: Nanostructured lipid carrier Bicalutamide Poorly water-soluble High-pressure homogenization Crystalline Form I Raman analysis

ABSTRACT

The purpose of this study was to develop an optimized nanostructured lipid carrier (NLC) for bicalutamide (BCT), a poorly water-soluble drug, and to investigate its phase transition behavior during the NLC processing. BCT loaded NLCs (BCT-NLCs) were prepared using a hot high-pressure homogenization (HPH) technique. Factorial design (2³) was used to identify the key formulation variables influencing particle size, percent drug encapsulation, and zeta potential of the NLC. The optimized batch (NLC-2) revealed spherical morphology with a smooth surface under scanning electron microscopy (SEM). NLC-2 achieved a high drug encapsulation of $98.48 \pm 0.70\%$ and demonstrated good stability for six months. Drug-lipid interaction was investigated using Fourier transform infrared spectra (FT-IR) and proton nuclear magnetic resonance (¹H NMR). BCT phase transition occurred during the NLC processing and BCT crystalline Form I was identified in NLC-2. The same was confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Raman analysis. The in vitro release study of NLC-2, revealed peppas release kinetics with Fickian diffusion (n < 0.5) as drug release mechanism. The presence of hydrophilic surfactants was significant to modulate BCT release from NLC-2. Finally, NLCs made of Precirol® ATO 5 (solid lipid) and triacetin (oil) posses the potential to entrap the poorly water-soluble drug, bicalutamide and the system can be tailor-made to meet the desired drug release. This may provide better prospects for the oral delivery of bicalutamide.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Prostate cancer is the second most common type of newly diagnosed cancer and the sixth leading cause of cancer deaths among men worldwide [1]. The treatment of prostate cancer generally includes surgery, radiation therapy, and the hormonal therapy [2]. Bicalutamide [BCT] is an orally active non-steroidal antiandrogen

^{*} Corresponding author. Tel.: +91 20 25437237; fax: +91 20 25439383. *E-mail address*: vbpokharkar@yahoo.co.in (V.B. Pokharkar).

^{0927-7757/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.colsurfa.2012.10.031