Physicochemical characterization of water-in-oil microemulsions formed by a binary 1,3-dioxolane alkyl ethoxylate/Aerosol-OT surfactant system

Douglas G. Hayes a,b, *, Mayson H. Alkhatib c,1, Javier Gomez del Rio b,2, Volker S. Urban d, **

a Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
b Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
c Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA
d Biology & Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6475, USA

HIGHLIGHTS

* Ellipsoids and cylinders form as cyclic ketal ethoxylate (CK-2,13) is added to AOT.
* Attractive interactions occur for cyclic ketal ethoxylate/AOT microemulsions.
* Water bound to AOTs counterion increased by 0.7 mol mol−1 as CK-2,13 is added.
* These changes occur when CK-2,13 is increased from 0.1 to 0.2 mol mol−1 CK-2,13 + AOT.

ARTICLE INFO

Article history:
Received 12 September 2012
Received in revised form 17 October 2012
Accepted 18 October 2012
Available online 1 November 2012

Keywords:
Aerosol-OT
Alkyl ethoxylate surfactant
Cleavable surfactant
Electrical conductivity
Fourier Transform Infrared Spectroscopy
Mixed surfactant systems
Reversed micelles
Small-angle neutron scattering
(Water-in-oil) microemulsions

ABSTRACT

The physicochemical behavior of the binary surfactant system consisting of the ionic surfactant sodium bis [2-ethylhexyl] sulfosuccinate, or Aerosol-OT (AOT), and the two-tailed cyclic ketal alkyl ethoxylate (2-tridecyl, 2-ethyl-1,3-dioxolan-4-yl) methoxy]-O-’methoxy poly(ethylene glycol)], or CK-2,13, in water/isooctane water-in-oil (w/o-) microemulsion systems enriched in AOT was performed to understand the arrangement of the two surfactants at the interface and the behavior and properties of the microemulsion systems to enable applications. Many of the properties observed were similar to microemulsions formed by AOT/C12E4 or C12E5, the latter two being linear alkyl ethoxylates of comparable tail length and average ethoxylate size, including a decrease of water solubilization and increase of attractive interactions with an increase of ethoxylate surfactant concentration, the latter determined via small-angle neutron scattering (SANS). SANS also demonstrated that the increase of the CK-2,13 fraction among the surfactants from 0.1 to 0.2 to 0.3 induced a change in shape from ellipsoids to cylinders, a trend not reported for AOT/C12E5 binary mixtures, and that the surface area per CK-2,13 molecule was approximately 35 Å², nearly identical to the value reported for C12E5. Profiles of electrical conductivity versus the water-surfactant mole ratio (W0) for microemulsions prepared at low surfactant concentrations (far below the percolation threshold) were bell-shaped, consistent with the charge-fluctuation