Transformation of planar Mögel Al\textsubscript{13} coagulant during the dilution and aging process

Zhe Bia, Chenghong Fenga,b, Dongsheng Wanga, Xiaopeng Gea, Hongxiao Tanga,∗

a State Key Laboratory of Environmental Aquatic Chemistry, RCEES, Chinese Academy of Sciences, Beijing 100085, China
b Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China

HIGHLIGHTS

- The Mögel Al\textsubscript{13} would decompose into oligomeric species at high concentration.
- Mögel Al\textsubscript{13} would transform to Keggin Al\textsubscript{13} at lower concentration.
- Transformation of Mögel Al\textsubscript{13} to Keggin Al\textsubscript{13} is a time dependent reaction.
- More Mögel Al\textsubscript{13} transformed to Keggin Al\textsubscript{13} under longer aging period.
- The concentration profile is used to interpret transformation process.

ABSTRACT

Transformation of a novel planar Mögel Al\textsubscript{13} (Al\textsubscript{13}(OH)\textsubscript{24}(H\textsubscript{2}O)\textsubscript{24}15+, simplified as M-Al\textsubscript{13}) coagulant in the dilution and aging process was investigated with Ferron colorimetric method, electrospray ionization mass spectrometry (ESI-MS) and 27Al NMR spectroscopy. Special attention has been paid to the transformation process of M-Al\textsubscript{13} to stereo Keggin Al\textsubscript{13} (37Al\textsubscript{12}(OH)\textsubscript{24}(H\textsubscript{2}O)\textsubscript{12}7+, simplified as K-Al\textsubscript{13}). M-Al\textsubscript{13} was found to be an unstable aluminum species and could be decomposed into oligomers as Al\textsubscript{i}, Al\textsubscript{j} and Al\textsubscript{k} when dissolved in solution. These newly formed oligomers were also found to polymerize into K-Al\textsubscript{13} by self-assembly during the dilution process. More K-Al\textsubscript{13} species could be continuously formed at the initial aging period of the diluted solution. On the whole, the hydrolysis and aging behavior of planar M-Al\textsubscript{13} in aqueous solution is quite different from those of the K-Al\textsubscript{13} species, which may provide insight into the structure re-organization mechanism of polymeric Al species in solution.

A R T I C L E I N F O

Article history:
Received 3 April 2012
Received in revised form 1 June 2012
Accepted 27 June 2012
Available online 6 July 2012

Keywords:
Planar Mögel-Al\textsubscript{13}
Stereo Keggin-Al\textsubscript{13}
Speciation
Dilution
Aging

1. Introduction

Polyaluminum chloride (PACl) is widely used as an effective coagulant in water purification. The performance of coagulation was proved to be closely related to the distribution of aqueous aluminum (Al) species in water [1–3]. Commercial PACI generally are composed of Al species as monomers, K-Al\textsubscript{13} (Al\textsubscript{13}OH\textsubscript{24}H\textsubscript{12}(H\textsubscript{2}O)\textsubscript{24}15+) and uncharacterized oligomers or colloidal species. Among these components, K-Al\textsubscript{13} has often been claimed to be the critical species with higher charges, higher molecular weight, and thus contributed to the higher performance of PACI than traditional monomeric Al coagulants [4–6]. Consequently, the stability and hydrolysis behavior of K-Al\textsubscript{13} has been the focus of researches in the past several decades.

More recently, another Al\textsubscript{13} species with planar structure (i.e., M-Al\textsubscript{13}, Al\textsubscript{13}OH\textsubscript{24}H\textsubscript{12}(H\textsubscript{2}O)\textsubscript{24}15+) has also been proved to be an efficient coagulant [7]. With the same polymerize degree with K-Al\textsubscript{13}, M-Al\textsubscript{13} with 15 positive charges might also show higher destabilization ability. Although M-Al\textsubscript{13} has attracted increasing attention as a novel class of inorganic coagulant, the stability and hydrolysis of M-Al\textsubscript{13} in aqueous solution has not been studied yet. While the overwhelming majority of studies on hydrolysis of Al species were based on K-Al\textsubscript{13} [8–10], the hydrolysis behavior of M-Al\textsubscript{13} is a problem to be clarified.