Contents lists available at ScienceDirect

## Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

# On the identities of modulo-*p* partitions<sup>\*</sup>

### Yufei Huang, Bolian Liu\*

School of Mathematical Science, South China Normal University, Guangzhou, 510631, PR China

#### ARTICLE INFO

Article history: Received 13 January 2011 Received in revised form 22 May 2011 Accepted 23 May 2011

*Keywords:* (*p*, *b*, *q*)-partition (*p*, *b*)-composition Recurrence Identity

### ABSTRACT

Some identities between partitions and compositions were obtained in the literature. As a natural extension, we introduce and study modulo-p partitions, where p is a positive integer. Moreover, several recurrence relations and some sufficient conditions for the existence of modulo-p partitions are given, respectively. In addition, we obtain some identities of modulo-p partitions. In the end, using the properties of a binary tree, we provide a method to determine modulo-p partitions.

© 2011 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Lots of interesting partition identities occurred since the first identity was given by Euler [1]. On the other hand, research on identities involving partitions and ordered partitions (namely, compositions [2]) are few and have only occurred in recent years [3–5]. The first such effort was made by Agarwal [3] in 2003, and recently, Guo [4] give some other identities using Agarwal's method.

Inspired by the definitions of "odd-even" partitions, "even" partitions and their partition identities in [3,4], we consider a more general problem of the identities between partitions and compositions in this paper.

Throughout this paper, let *s*, *n*, *p*, *m* be positive integers, and *b*, *q*, *t*, *c*, *r*, *d* be nonnegative integers such that s = tp + r, n = cp + d,  $0 \le b$ , *q*, *r*,  $d \le p - 1$ . Let  $x^y$  denote the abbreviation of  $x + x + \cdots + x$ . We first introduce the (p, b, q)-

partition, the F-(p, b, q)-partition and the (p, b)-composition as follows. For convenience, they are all called modulo-p partitions.

**Definition 1.1** ([6]). A two-rowed array of nonnegative integers  $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ b_1 & b_2 & \cdots & b_k \end{pmatrix}$  is called a Frobenius partition of n, where  $a_1 > a_2 > \cdots > a_k \ge 0, b_1 > b_2 > \cdots > b_k \ge 0 (k \in Z_+)$ , and  $n = k + \sum_{i=1}^k a_i + \sum_{i=1}^k b_i$ .

**Remark 1.** Note that each partition can be represented by a Frobenius notation. For instance, the Frobenius notation of 22 = 8 + 7 + 3 + 3 + 1 (see the following figure) is  $\begin{pmatrix} 7 & 5 & 0 \\ 4 & 2 & 1 \end{pmatrix}$ .





<sup>&</sup>lt;sup>☆</sup> This work is supported by NNSF of China (No. 11071088).

<sup>\*</sup> Corresponding author.

E-mail address: liubl@scnu.edu.cn (B. Liu).

<sup>0895-7177/\$ –</sup> see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.05.046