On the identities of modulo-p partitions ${ }^{\text {n }}$

Yufei Huang, Bolian Liu*
School of Mathematical Science, South China Normal University, Guangzhou, 510631, PR China

A R T I C L E I N F O

Article history:

Received 13 January 2011
Received in revised form 22 May 2011
Accepted 23 May 2011

Keywords:

(p, b, q)-partition
(p, b)-composition
Recurrence
Identity

Abstract

Some identities between partitions and compositions were obtained in the literature. As a natural extension, we introduce and study modulo- p partitions, where p is a positive integer. Moreover, several recurrence relations and some sufficient conditions for the existence of modulo-p partitions are given, respectively. In addition, we obtain some identities of modulo-p partitions. In the end, using the properties of a binary tree, we provide a method to determine modulo- p partitions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Lots of interesting partition identities occurred since the first identity was given by Euler [1]. On the other hand, research on identities involving partitions and ordered partitions (namely, compositions [2]) are few and have only occurred in recent years [3-5]. The first such effort was made by Agarwal [3] in 2003, and recently, Guo [4] give some other identities using Agarwal's method.

Inspired by the definitions of "odd-even" partitions, "even" partitions and their partition identities in [3,4], we consider a more general problem of the identities between partitions and compositions in this paper.

Throughout this paper, let s, n, p, m be positive integers, and b, q, t, c, r, d be nonnegative integers such that $s=$ $t p+r, n=c p+d, 0 \leq b, q, r, d \leq p-1$. Let x^{y} denote the abbreviation of $\underbrace{x+x+\cdots+x}_{y}$. We first introduce the $(p, b, q)-$ partition, the $F-(p, b, q)$-partition and the (p, b)-composition as follows. For convenience, they are all called modulo-p partitions.

Definition 1.1 ([6]). A two-rowed array of nonnegative integers $\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{k} \\ b_{1} & b_{2} & \cdots & b_{k}\end{array}\right)$ is called a Frobenius partition of n, where $a_{1}>a_{2}>\cdots>a_{k} \geq 0, b_{1}>b_{2}>\cdots>b_{k} \geq 0\left(k \in Z_{+}\right)$, and $n=k+\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i}$.

Remark 1. Note that each partition can be represented by a Frobenius notation. For instance, the Frobenius notation of $22=8+7+3+3+1$ (see the following figure) is $\left(\begin{array}{lll}7 & 5 & 0 \\ 4 & 2 & 1\end{array}\right)$.

[^0]0895-7177/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2011.05.046

[^0]: *This work is supported by NNSF of China (No. 11071088).

 * Corresponding author.

 E-mail address: liubl@scnu.edu.cn (B. Liu).

