Contents lists available at ScienceDirect

ELSEVIER

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Strong convergence theorems for a semigroup of asymptotically nonexpansive mappings

H. Zegeye^a, N. Shahzad^{b,*}, O.A. Daman^a

^a Department of Mathematics, University of Botswana, Pvt. Bag 00704, Gaborone, Botswana ^b Department of Mathematics, King Abdul Aziz University, P.O. B. 80203, Jeddah 21589, Saudi Arabia

ARTICLE INFO

Article history: Received 18 February 2011 Received in revised form 6 May 2011 Accepted 6 May 2011

Keywords: Nonexpansive mappings Asymptotically nonexpansive mappings Fixed points Strongly continuous semigroup of nonexpansive mappings Strongly continuous semigroup of asymptotically nonexpansive mappings

ABSTRACT

Let *K* be a nonempty closed convex subset of a real Banach space *E*. Let $\mathcal{T} := \{T(t) : t \ge 0\}$ be a strongly continuous semigroup of asymptotically nonexpansive mappings from *K* into *K* with a sequence $\{L_t\} \subset [1, \infty)$. Suppose $F(\mathcal{T}) \neq \emptyset$. Then, for a given $u \in K$ there exists a sequence $\{u_n\} \subset K$ such that $u_n = (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s)u_n ds + \alpha_n u$, for $n \in \mathbb{N}$, where $t_n \in \mathbb{R}^+$, $\{\alpha_n\} \subset (0, 1)$ and $\{L_t\}$ satisfy certain conditions. Suppose, in addition, that *E* is reflexive strictly convex with a Gâteaux differentiable norm. Then, the sequence $\{u_n\}$ converges strongly to a point of $\mathcal{F}(\mathcal{T})$. Furthermore, an *explicit* sequence $\{x_n\}$ which converges strongly to a fixed point of \mathcal{T} is proved.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let *K* be a closed convex subset of a Hilbert space *H*. One parameter family $\mathcal{T} := \{T(t) : t \ge 0\}$, denotes the set of nonnegative real numbers, is said to be *strongly continuous semigroup of Lipschitzian mappings* from *K* into *K* if the following conditions are satisfied:

(1) T(0)x = x for all $x \in K$;

- (2) T(s + t) = T(s)T(t) for all $s, t \ge 0$;
- (3) for each t > 0, there exists a bounded measurable function L_t : $(0, \infty) \rightarrow [0, \infty)$ such that $||T(t)x T(t)y|| \le L_t ||x y||, x, y \in K$;

(4) for each $x \in K$, the mapping T(.)x from $\mathbb{R}^+ = [0, \infty]$ into K is continuous.

A strongly continuous semigroup of Lipschitzian mappings \mathcal{T} is called *strongly continuous semigroup of nonexpansive* mappings if $L_t = 1$ for all t > 0, and *strongly continuous semigroup of asymptotically nonexpansive* if $\limsup_{t\to\infty} L_t \leq 1$. Note that for asymptotically nonexpansive semigroup \mathcal{T} , we can always assume that the Lipschitzian constant $\{L_t\}_{t>0}$ are such that $L_t \geq 1$ for each t > 0, L_t is non-increasing in t, and $\lim_{t\to\infty} L_t = 1$; otherwise we replace L_t , for each t > 0, with $\overline{L_t} := \max\{\sup_{s\geq t} L_s, 1\}$. \mathcal{T} is said to have a fixed point if there exists $x_0 \in K$ such that $T(t)x_0 = x_0$, for all $t \geq 0$. We denote by $F(\mathcal{T})$, the set of fixed points of \mathcal{T} , i.e., $F(\mathcal{T}) := \cap_{t>0} F(T(t))$.

A continuous operator of semigroup $\mathcal{T} := \{T(t): t \ge 0\}$, is said to be *uniformly asymptotically regular* on K if for all $h \ge 0$ and any bounded subset C of K, $\lim_{t\to\infty} \sup_{x\in C} ||T(h)T(t)x - T(t)x|| = 0$.

^{*} Corresponding author.

E-mail addresses: habtuzh@yahoo.com (H. Zegeye), nshahzad@kau.edu.sa, naseer_shahzad@hotmail.com (N. Shahzad), damanoa@mopipi.ub.bw (O.A. Daman).

^{0895-7177/\$ –} see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.05.016