A highly efficient, green and recoverable catalytic system for the epoxidation of fatty esters and biodiesel with H\textsubscript{2}O\textsubscript{2}

Miriam De Torresa,1, Isabel W.C.E. Arendsb,2, José A. Mayoralc,3, Elisabet Piresa,1, Gonzalo Jiménez-Osésa,d,∗

a Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, Universidad de Zaragoza–CSIC, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain
b Laboratory for Biocatalysis and Organic Chemistry, Delft University of Technology, Julianalaan 13, 2628 BL Delft, Netherlands
c Instituto Universitario de Catálisis Homogénea, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, E-50009 Zaragoza, Spain
d Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 607 Charles E. Young Drive East, 90095, Los Angeles, CA, United States

A R T I C L E I N F O

Article history:
Received 5 January 2012
Received in revised form 2 March 2012
Accepted 3 March 2012
Available online 12 March 2012

Keywords:
Epoxidation
Biodiesel
Hydrogen peroxide
Selenium
Fluoroalcohols

A B S T R A C T

A highly efficient and green strategy for the epoxidation of fatty esters, combining a green oxidant (aqueous hydrogen peroxide) and a recyclable catalyst (a seleninic acid derivative) is presented. The possibility of integrating renewable solvents derived from glycerol in the productive cycle of biodiesel commodities is also explored. Fluorinated solvents (both commercial and glycerol-derived) play a double key role on this methodology: on the one hand, they strongly accelerate epoxidation reaction with respect to common non-fluorinated solvents and, on the other hand, some of them allow catalyst recycling. Mono- and polyunsaturated fatty esters, as well as soy biodiesel have been epoxidized with excellent yields and selectivities towards epoxide under the optimal conditions and with minimum catalyst loads.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade great interest has been focused in the development of new efficient processes for the functionalization of fatty acids through oxidation reactions [1]. This interest has been prompted by the need of reaching renewable chemicals in order to satisfy society demands for a greener chemistry. In this way, epoxidation of fatty acids derivatives is one of the most promising reactions to achieve the synthesis of a large variety of interesting products such as hydroxycarboxylic acids, hydroxyesters, diols, etc. To this aim, the use of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) for selective epoxidation is highly desirable because it is cheap, it has a high content in active oxygen, and it is clean, since the only byproduct formed is water [2]. The use of H\textsubscript{2}O\textsubscript{2} as oxidant often requires an efficient catalytic process in order to achieve high conversions and selectivities, because of the poorer reactivity of H\textsubscript{2}O\textsubscript{2} compared to other classic epoxidizing reagents such as organic peracids, peroxysterol or persulfates. Many catalytic systems based on different metals have been reported for the epoxidation of a wide range of alkenes using hydrogen peroxide [3].

With respect to fatty acid derivatives epoxidation, several examples using the classical conditions based on peroxy acids generated in situ from carboxylic acids (typically formic or acetic acids) as active oxygen carriers, H\textsubscript{2}O\textsubscript{2} as oxygen donor and strong mineral acids (H\textsubscript{2}SO\textsubscript{4}, HNO\textsubscript{3}, H\textsubscript{3}PO\textsubscript{4}) as catalysts have been reported [4]. Inorganic and organometallic catalysts based on tungsten [5], rhenium and manganese [6] have also been used. The heterogeneous version of the epoxidation reaction with H\textsubscript{2}O\textsubscript{2} on fatty derivatives has also been explored using amorphous SiO\textsubscript{2}/Ti [7] and methyltriethoxysilane on niobia catalysts [8], ion exchange resins [9], and sol–gel aluminas [10]. In the past years, the enzymatically promoted epoxidation of vegetable oils and fatty acids is gaining increasing interest [11].

Aryl diselenides [12] and their oxidized counterparts, i.e. aryl selenenic [13] and peroxyselefinic acids [14] have been described as highly efficient oxygen transfer catalysts for different processes, principally the epoxidation of olefins. Heterogenized versions of these catalysts have been also described [15]. On the other hand, the so-called “booster effect” of fluorinated alcohols, which has been beautifully described by the groups of Neumann and co-workers...