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Abstract The discovery of non-linear causal relationship under additive non-Gaussian
noise models has attracted considerable attention recently because of their high flexibility.
In this paper, we propose a novel causal inference algorithm called least-squares indepen-
dence regression (LSIR). LSIR learns the additive noise model through the minimization of
an estimator of the squared-loss mutual information between inputs and residuals. A notable
advantage of LSIR is that tuning parameters such as the kernel width and the regularization
parameter can be naturally optimized by cross-validation, allowing us to avoid overfitting
in a data-dependent fashion. Through experiments with real-world datasets, we show that
LSIR compares favorably with a state-of-the-art causal inference method.
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1 Introduction

Learning causality from data is one of the important challenges in the artificial intelligence,
statistics, and machine learning communities (Pearl 2000). A traditional method of learning
causal relationship from observational data is based on the linear-dependence Gaussian-
noise model (Geiger and Heckerman 1994). However, the linear-Gaussian assumption is too
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