چکیده
مدل سازی ترمودینامیکی موتورهای درون‌سوز بر اساس اصول ترمودینامیک سرعت محدود توسعه یافته است. در این روش اثر حرکت پیستون در کاهش کار تولیدی در فرآیند ابزار و افزایش کار مصرفی در فرآیند تراکم تعیین می‌شود. از طرف دیگر بازگشت نابی‌پردازی‌های ناشی از اصطکاک و فرآیند خلاف مکس و تخلیه در مدل ترمودینامیکی توسه‌بافته وارد محاسبات گردیده است. مدل به دست آمده برای شیب‌سازی عملکرد دو نوع موتور درون‌سوز که از آن‌ها موتور مدل EF7 می‌باشد بکار گرفته شد و نشان داده شد که در هر دو مورد تأثیر انطباق مناسبی با داده‌های آزمایشگاهی هردو موتور دارد. نتایج حاصل از تحلیل با مدل ترمودینامیکی زمان محدود مقایسه شده و نشان داده شد که مدل سرعت محدود با دقت بیشتری عملکرد حرارتی موتور را تخمین می‌زند.

کلیدواژه‌ها: موتور احتراق داخلی، موتور مدل EF7، ترمودینامیک سرعت محدود، FST، مدل سازی ترمودینامیکی، سیکل اتو

Modeling of Internal Combustion Engine Using Finite Speed Thermodynamics

Afshin Barjaneh1*, Ramin Karami2, Hoseyn Sayyaadi3

1 MSc Student, Mechanical Engineering Department, K. N. Toosi University of Technology, barjaneh@yahoo.com
2 MSc Student, Mechanical Engineering Department, K. N. Toosi University of Technology, ramin.karami@yahoo.com
3 Faculty of Mechanical Engineering Department, K. N. Toosi University of Technology, sayyaadi@kntu.ac.ir

Abstract
Thermodynamic modeling of internal combustion engine based on the concept of finite speed thermodynamics (FST) was presented. In developing FST model, effect of piston motion in reduction of the expansion work as well as increasing in compression work was taken into account. Moreover, irreversibilities due to the mechanical friction as well as throttling pressure losses of intake/exhaust processes were implemented in the model. Developed FST model was employed to simulate thermal performance of two case study internal combustion engines (including EF7 engine). Using actual test data of these two engines, it was verified that FST model simulates thermal performance of engines with satisfactory a high precision. Furthermore, through a comparison of results with corresponding results obtained in similar thermodynamic approaches (finite time thermodynamics called as FTT), it was shown that FST model has significant superiority over the FTT in predicting the actual performance of a real engine.

Keywords: Internal combustion engine, EF7 engine, Finite Speed Thermodynamics (FST), Thermodynamic modeling, Otto cycle