RESEARCH PAPER

On the conditional superiority of counter-current over co-current extraction in microchannels

J. R. Picardo · S. Pushpavanam

Received: 17 December 2012/Accepted: 6 March 2013/Published online: 10 April 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract In liquid-liquid extraction, counter-current flow of the phases always results in an improved performance as compared to co-current flow, under similar operating conditions. However, it is challenging to implement counter-current flow in a microchannel. Therefore, the improvement in extraction performance must be significant to justify the selection of counter-current flow over co-current flow in microchannels. In this study, we identify the range of fluid properties and operating conditions for which counter-current operation exhibits significant benefits. For this, simplified mathematical models are developed for both co-current and counter-current extraction in the stratified flow regime. These models, while being simple, capture the essential physics of the extraction process and facilitate a thorough investigation of the relative extraction performance across the parameter space. An analytical solution, based on the theory of Sturm-Liouville linear operators, is obtained for the case of co-current flow. The counter-current model belongs to the class of two-way diffusion equations for which a novel semi-analytical solution is presented. The analysis of the predictions of the models shows that the relative extraction performance is governed by a general principle of maximum gain at mediocre performance. These results help identify the significantly restricted range of operating parameters for which counter-current operation is a truly attractive alternative to the co-current mode of extraction in microchannels.

List of symbols

у	Coordinate along the channel width
x	Coordinate along the channel length
i	Index: 1 denotes carrier phase and 2 denotes
	solvent phase
c_{i}	Concentration of solute in each fluid phase
vi	Plug flow velocities of each fluid phase
D_i	Diffusivity of solute in each fluid phase
h	Location of the interface
Η	Width of the channel
$h_{ m r}$	Location of the interface as a fraction of total
	channel width
Κ	Equilibrium coefficient of solute concentration
$C_{\rm in}$	Initial concentration in entering carrier stream
Pe_i	Peclet number in each fluid phase (Eq. 8 for the
	co-current problem and Eq. 16 for the counter-
	current problem as well as parameter studies)
β	Ratio of diffusivities
$\varphi_{i,n}(\mathbf{y})$	<i>n</i> th eigen function in each fluid phase
,	(co-current problem)
λ_n	<i>n</i> th eigen value (co-current problem)
ER	Extraction ratio (Eq. 37)
RER	Relative extraction ratio (Eq. 38)
	-

1 Introduction

The extraction of a solute from one liquid phase (carrier) to another (solvent) is a key downstream operation in chemical process industries. The flow of two immiscible liquids

J. R. Picardo \cdot S. Pushpavanam (\boxtimes) Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India e-mail: spush@iitm.ac.in