Development of an analytical reference stress stress equation for inner-diameter defected curved plates in tension

Stijn Hertelé a,*, Wim De Waele b, Rudi Denys b

aFWO Handers aspirant, Ghent University, Laboratory Soete, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
bGhent University, Laboratory Soete, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

1. Introduction

Generally, the failure of a defected structure is governed by two different failure modes: plastic collapse and fracture. Both modes can be simultaneously investigated using a failure assessment diagram (FAD) as described in some standards and recommended practices, e.g. R6 \cite{1}, BS7910 \cite{2}, FITNET \cite{3}, API RP579 \cite{4}. On the one hand, the calculation of proximity to plastic collapse in a FAD analysis (plotted on the horizontal axis) requires knowledge of a limit load, defined as the collapse load of the structure, assuming a perfectly plastic material. A situation of ‘local collapse’ can be investigated, in which case the limit load corresponds to a collapse of the ligament ahead of the defect. In contrast, ‘global collapse’ refers to the yielding of the entire cross section containing the defect. Completely equivalent to the concept of a limit load is the so-called reference stress. This stress is defined in such a way that, when the limit load is achieved, it reaches the metal’s yield strength. The concept of reference stress assumes a perfectly plastic yielding behaviour. By definition, limit load and reference stress are connected through the following relation \cite{5}:

\[\frac{\sigma_{\text{ref}}}{\sigma_y} = \frac{P}{P_L} \]

(1)

where \(\sigma_{\text{ref}} \) is the reference stress, \(\sigma_y \) the yield stress, \(P \) the applied load, and \(P_L \) the limit load. In a FAD diagram, \(\sigma_{\text{ref}}/\sigma_y \) is denoted as \(L_r \) and plotted on the horizontal axis.

On the other hand, the calculation of proximity to fracture in a FAD analysis (plotted on the vertical axis) requires knowledge of the crack driving force, expressed in terms of stress intensity factor \(K \), crack tip opening displacement (CTOD) or \(J \) integral. \(K \) applies to linear-elastic fracture mechanics, whereas CTOD and \(J \) integral are related quantities in elastic-plastic fracture mechanics. To estimate the crack driving force, Ainsworth \cite{5,6} started from Kumar and Shih’s \cite{7} results to obtain an expression for \(J \) integral that requires a reference stress:

\[J = \frac{K^2}{E} \left(\frac{E\sigma_{\text{ref}}}{\sigma_{\text{ref}}} + \frac{\sigma_{\text{ref}}^3}{2E\sigma_{\text{ref}}^2} \right) \]

(2)

In this expression, \(K \) is the linear-elastic mode-I stress intensity factor, \(E \) is equal to Young’s modulus \(E \) for plane stress, and to \(E/(1 - \nu^2) \) for plane strain, where \(\nu \) is Poisson’s ratio. \(\sigma_{\text{ref}} \) is the reference strain, which corresponds to \(\sigma_{\text{ref}} \) on the stress–strain diagram of the material. A reference stress that corresponds to the

* Corresponding author. Tel.: +32 9 264 32 76; fax: +32 9 264 32 95. E-mail address: stijn.hertele@ugent.be (S. Hertelé).