

Kinetic investigation of methane hydrate in the presence of Imidazolium Based Ionic Liquid solutions

M. Zare¹, A. Haghtalab^{*1}, A. N. Ahmadi², K. Nazari², Ali Mehdizadeh²

1- Department of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran 2- Center of chemistry and petrochemical, Research Institute of Petroleum Industry, Tehran, Iran haghtala@modares.ac.ir

Abstract

Methane hydrate formation experiments in the presence of the various imidazolilium based ionic liquid solutions with 0.5wt% concentration including 1-buthyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO₄]), 1-ethyl-3-methylimidazolium hydrogen sulfate ([EMIM][HSO₄]), 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][EtSO₄]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF₄]) and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([OH-EMIM][BF₄]) were conducted in a high pressure reactor at the same temperature. The induction time, gas consumption and temperature were measured. The results of experiments were indicated that [EMIM][EtSO₄] and [BMIM][MeSO₄] had the kinetic inhibiton effects meanwhile the other ionic liquids could be able to apply as the kinetic promoters.

Keywords: ionic liquid, hydrate, methane, imidazolium, kinetic, promoter, induction time.

Research Highlights

- Measuring induction time, gas consumption and temperature.
- [EMIM][EtSO₄] and [BMIM][MeSO₄] solutions with 0.5w% had the kinetic inhibiton effects.
- [EMIM][HSO₄], [BMIM][BF₄] and [OH-EMIM][BF₄] solutions with 0.5w% could be as the kinetic promoters for methane hydrate formation.