Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system

Qingxiang Yang * , Jia Wang, Hongtao Wang, Xuanyu Chen, Siwei Ren, Xueling Li, Ying Xu, Hao Zhang, Xuemei Li

College of Life Sciences, Henan Normal University, Xinxiang 453007, China

Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China

HIGHLIGHTS

► We traced the treatment efficiencies of the biological system in a full scale PDW treatment plant.
► The PDW treatment system harbored diverse bacteria, archaean and fungi.
► The microbial populations underwent dramatic changes during system start-up and running period.
► In contrast to fungi, the diversity of bacteria and archaean increased with the system running.

ABSTRACT

In this study, the dynamics of bacterial, fungal and archaean populations in two-stage biological processes of a full-scale printing and dyeing wastewater treatment system were traced using cultivation and molecular biological techniques. The enumeration results indicated that bacteria were the dominant population in the system, in which the ratio of fungi to bacteria decreased in all the treatment units, while the ratio of archaean to bacteria increased significantly, especially in samples from the second-stage biological treatment process. PCR–denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial diversity increased with system running and 64.6% of bacterial, 57.6% of fungal and 38.2% of archaean populations remained in the system from the seed sludge during system start-up. In spite of variation in the microbial community and composition of the influents, some bacterial species such as *Thauera* sp. and *Xanthomonadaceae* were present simultaneously in all the collected samples.

1. Introduction

In China, various dye-containing wastewaters constitute nearly 30% of industrial effluents, in which printing and dyeing wastewater (PDW) is one of the most important effluents. PDW normally has a low ratio of BOD5/COD (5 days biochemical oxygen demand/chemical oxygen demand, around 20%), high pH value (10–13), and contains toxic, frequently changing and bio-recalcitrant components such as dyes and dyeing additives (polyvinyl alcohol, PVA) (Wu et al., 2007). Although the current treatment for this wastewater in China is a combination of physical–chemical and biological processes, various biological methods play core roles and are capable of removing 40–50% COD and 50–60% of colority-related pollutants.