Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes

Soumen K. Maiti, Y. Lukka Thuyavan, Satyendra Singh, Harinder S. Oberoi, Gopal P. Agarwal

A R T I C L E I N F O

Article history:
Received 29 August 2011
Received in revised form 7 March 2012
Accepted 9 March 2012
Available online 21 March 2012

Keywords:
Rice straw
Acid pretreatment
Nanofiltration
DSPM
Separation

A B S T R A C T

The main objective of this work was to remove inhibitors and concentrate sugars in hydrolysates obtained from dilute acid-treated rice straw. The Donnan steric pore flow model (DSPM) was applied for membrane characterization and it captured the membrane transport adequately. The polyamide and polyethylene sulfonate nanofiltration membranes of 150 Da molecular weight cut-off showed a separation factor of 3 for acetic acid over glucose and xylose and 7 over cellobiose for a simulated mixture at the optimum pH of 3. A separation factor of 3 was also found for the inhibitors hydroxymethyl fufural, ferulic and vanillic acids over sugars. The concentration of rice straw acid hydrolysate by a volume concentration ratio of 4 increased the concentrations of xylose, glucose, arabinose, cellobiose and inhibitor by 100%, 104%, 93%, 151% and 3%, respectively which indicates the membrane can be used for separating the inhibitors from acid-pretreated rice straw hydrolysate while simultaneously concentrating sugars.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The complex crystalline structure of lignocelluloses in plants is designed to resist enzymatic attack. To make this structure accessible to the cellulase in saccharification or simultaneous saccharification and fermentation (SSF) processes, lignocellulosic biomass must be pretreated (Irammahboob et al., 2002). This step is the most expensive processing step in the bioconversion process. Steam explosion, hot water pretreatment, thermal pretreatment with acid treatment or alkalies treatment, solvent extraction with ethanol, methanol, acetone and ethylene glycol wet oxidation, ionic liquid pretreatment and biologic pretreatment have been explored (Taherzadeh and Karimi, 2008). Dilute acid pretreatment is the most commonly used method (Hendriks and Zeeman, 2009). The major problem encountered in this high temperature process involving acid is the production of potent inhibitors having toxic effects on fermentation microorganism in addition to sugars. These inhibitors include pentose-derived furfurals, hexose-derived hydroxymethyl furfural (HMF), lignin-derived phenolic compounds such as ferulic acid and vanillic acid, and several other acids such as acetic acid and formic acid (Kim et al., 2011; Weng et al., 2010). These inhibitors must be removed from hydrolysates for further use in fermentation. Vacuum evaporation, ion exchange, precipitation by lime and adsorption have been employed to reduce inhibitor levels (Converti et al., 2000); however, these detoxification methods can reduce the content of the volatile compounds and increase that of non-volatile compounds (Parajo et al., 1997). Such methods are also energy intensive, thereby incurring high processing costs. Precipitation of toxic compounds by neutralization and neutralization generates additional waste products resulting in an extra processing step. Ion exchange method is a very expensive step and adsorption is dependent on the adsorbent concentration, pH, temperature and contact time. Nanofiltration (NF) is a promising membrane separation technology due to its low energy consumption and unique separation properties. Although, NF has a wide range of applications in fermentation broth separation, its use for the separation of inhibitors from lignocellulosic prehydrolyzates using NF has received only limited attention (Weng et al., 2010). A single inhibitor was separated from a synthetic solution using nanofiltration (Qi et al., 2011; Weng et al., 2009), but since a large number of inhibitors are generated after pretreatment of lignocellulosic materials, actual hydrolysates have to be studied. Also the separation of inhibitors like ferulic acid, vanillic acid and valuable oligosaccharide like cellobiose produced from cellulose due to incomplete hydrolysation has not been studied. Therefore, the objective of the present work was to investigate the feasibility of removing inhibitors such as acetic acid, furfural, ferulic acid, HMF and vanillic acid from model solution as well as acid-pretreated rice straw hydrolysate by different nanofiltration membranes. The focus was on characterization of different polyamide and poly ether sulfonate membranes, optimization of operating conditions for simulated mixture of sugars and inhibitors as well as actual hydrolysate solution and modeling of the separation process.