Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator

I.L. García, J.A. López, M.P. Dorado, N. Kopsahelis, M. Alexandri, S. Papanikolaou, M.A. Villar, A.A. Koutinas

1 Department of Physical Chemistry and Applied Thermodynamics, Escuela Politecnica Superior, University of Cordoba, campus de excelencia agroalimentario, ceiA3, 23071 Cordoba, Spain
2 Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino “La Carrindanga” Km. 7, 8000 Bahía Blanca, Buenos Aires, Argentina
3 Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece

Highlights

- Valorisation of biodiesel industry by-products for PHA production.
- Replacement of commercial carbon sources and nutrient supplements.
- Replacement of precursors for co-polymer production.
- Influence of salt impurities concentration on PHA production.
- Analysis of thermophysical properties of the produced PHAs.

Abstract

Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8–8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9 g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6 g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K2SO4, the inhibitory effect was observed only at concentrations higher than 20 g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance (13C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery.

1. Introduction

Most processes for biodiesel production generate significant quantities of by-products. For instance, the utilization of oilseeds as raw materials leads to the production of a protein-rich oilseed meal and a crude glycerol stream. Valorisation of oilseed meals and crude glycerol into various products including chemicals, biodegradable polymers, value-added ingredients (e.g. extracts with antioxidant properties), food and feed would improve the economics of biodiesel production. Crude glycerol is a platform chemical that could be converted into different chemicals through chemical synthesis or fermentation (Koutinas et al., 2007).

Polyhydroxyalkanoates (PHAs) are a family of biodegradable polymers produced as intracellular energy-reserve granules during fermentation by more than 300 microorganisms including Cupriavidus necator (Lee, 1996; Choi et al., 1998). The microbial production of PHAs by C. necator is mainly based on the limitation of a nutritional element such as N, P, Mg, K, O, or S in the presence of an abundant source of carbon. PHAs can be used as substitutes...