Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

PVP-assisted assembly of lanthanum carbonate hydroxide with hierarchical architectures and their luminescence properties

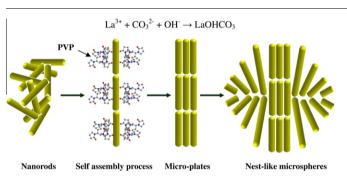
Gang Wang^a, Hui Wang^{b,*}, Jintao Bai^{a,*}, Zhaoyu Ren^a, Jinbo Bai^c

^a National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, PR China

^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China

^c Laboratory MSS/MAT, CNRS UMR 8579, Ecole Centrale Paris, 92295 Chatenay Malabry, France

HIGHLIGHTS


- ► Hierarchical LaOHCO₃ was synthesized by a simple PVPassisted hydrothermal route.
- ► The LaOHCO₃ was assembled by numerous nanorods with uniform size.
- ► The morphology of LaOHCO₃ can be adjusted by changing the reaction time.
- The optical property of LaOHCO₃ with different morphology was studied.
- ► The luminescence property of LaOHCO₃ was size- and shape-dependent.

ARTICLE INFO

Article history: Received 27 July 2012 Received in revised form 21 October 2012 Accepted 22 October 2012 Available online 30 October 2012

Keywords: LaOHCO₃ microspheres Polyvinylpyrrolidone Hierarchical structure Luminescence property

G R A P H I C A L A B S T R A C T

ABSTRACT

In the presence of polyvinylpyrrolidone (PVP), three-dimensional (3D) hierarchical nest-like architecture of lanthanum carbonate hydroxide (LaOHCO₃) with uniform size is successfully synthesized by a facile hydrothermal process using La(NO₃)₃ as the starting material. The result indicates that LaOHCO₃ microspheres are constructed layer-by-layer from a large number of two-dimensional plates, which are composed of numerous nanorods with a length of ~50 nm. The formation mechanism is discussed on the basis of the result of a time-dependent experiment. It is demonstrated that PVP played an important role in the formation of the hierarchical structure. The room temperature photoluminescence properties of the LaOHCO₃ with different morphologies and size are investigated, showing that the nest-like LaOHCO₃ exhibits a relative stronger luminescence intensity at 420 nm than the synthesized rod- and apple-like LaOHCO₃ samples.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

E-mail addresses: huiwang@nwu.edu.cn (H. Wang), jintaobai@sina.cn (J. Bai).

Rare-earth compounds have received significant attention in the area of electronics, photonics and magnetics due to their extraordinary crystal type, shape, size and composition [1]. Nowadays, much attention has been focused on the synthesis of lanthanide compounds. And there have been many reports for the synthesis of lanthanide oxides (La_2O_3) [2–5], lanthanide hydroxide $(La(OH)_3)$ [6–9], and lanthanide carbonate $(La_2(CO_3)_3)$

^{*} Corresponding authors. Address: National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, PR China (H. Wang). Tel.: +86 29 8836 3115; fax: +86 29 8830 3798.

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.10.033