Chemical Engineering Journal 215-216 (2013) 969-978

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

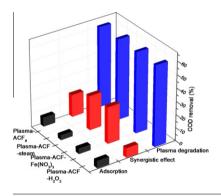
Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers

Bo Jiang, Jingtang Zheng*, Xiu Lu, Qian Liu, Mingbo Wu*, Zifeng Yan, Shi Qiu, Qingzhong Xue, Zhenxing Wei, Huiji Xiao, Mengmeng Liu

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, Shandong, PR China

HIGHLIGHTS

- Combined systems of plasma and modified ACF samples were utilized for MO removal.
- ► The adsorption-catalytic effects of ACFs with various modification methods were studied.
- The property changes of MO solution were estimated in various degradation processes.
- Plasma degradation, adsorption and synergistic effect for organic removal were extensively evaluated.


ARTICLE INFO

Article history: Received 22 July 2012 Received in revised form 10 October 2012 Accepted 9 November 2012 Available online 17 November 2012

Keywords: Activated carbon fiber Surface modification Methyl orange Non-thermal plasma

G R A P H I C A L A B S T R A C T

Plasma degradation, adsorption and synergistic effect for organic removal were extensively studied and synergistic effect played an important role for organic removal in combined degradation processes.

ABSTRACT

Methyl orange (MO) was employed to evaluate degradation efficiency of the synergistic effect of activated carbon fibers (ACFs) and pulsed discharge non-thermal plasma in aqueous solution. In order to study the roles of the ACFs during the degradation activities, adsorption–catalytic effects of ACF samples modified with H_2O_2 , $Fe(NO_3)_3$ and steam were assessed. The chemical and physical properties of these ACFs were characterized by XRD, SEM, BET and chemical titration methods. For comparative purposes, experiments of adsorption on ACF samples, plasma degradation, and plasma degradation in the presence of ACF samples were carried out. Plasma alone can obtain the decoloration of 77.3% for 100 mg/L MO solution and generate H_2O_2 (0.88 mM) and O_3 (0.025 mM) after 30 min treatment. Results also showed that the presence of either ACF₀ or modified ACFs considerably improved MO decoloration and COD removal in the plasma reactor. Compared with ACF₀ and ACF–H₂O₂, a total decoloration of MO and above 90% COD removal were obtained in approximately 30 min for ACF–steam and ACF–Fe(NO₃)₃ due to their larger adsorption capacities and better catalytic effects. In combined degradation processes, the yields of H_2O_2 and O_3 all decreased in presence of ACF samples as compared with plasma alone process. It was also observed that ACF samples can be well regenerated in combined processes and their adsorption behaviors contributed little for final organic removal.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dyes and pigments are widely used in various industries to color the final products and 10-15% of the world's total output of dye

Chemical Engineering Journal

^{*} Corresponding authors. Tel.: +86 13854628317; fax: +86 546 8395190 (J. Zheng), tel.: +86 13505468246; fax: +86 86983452 (M. Wu).

E-mail addresses: jtzheng03@163.com (J. Zheng), wmbpeter@yahoo.com (M. Wu).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.11.046