
Chemical Engineering Journal 211-212 (2012) 89-96

Contents lists available at SciVerse ScienceDirect

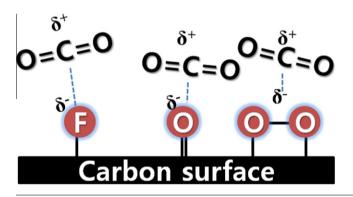
Chemical Engineering Journal

Chemical Engineering Journal

Surface characteristics and carbon dioxide capture characteristics of oxyfluorinated carbon molecular sieves

Seho Cho^a, Hye-Ryeon Yu^a, Ki-Dong Kim^b, Kwang Bok Yi^c, Young-Seak Lee^{a,*}

^a Department of Fine Chemical Engineering and Applied Chemistry, BK21-E²M, Chungnam National University, Daejeon 305-764, Republic of Korea ^b R&D Center, Korea Gas Corporation, Seongnam Gyeonggi Province 463-815, Republic of Korea


^c Department of Chemical Engineering Education, Chungnam National University, Daejeon 305-764, Republic of Korea

HIGHLIGHTS

- ► To investigate the properties of CO₂ uptake, surface-treated CMSs were prepared by oxyfluorination.
- ► The CO₂ uptake capacities of the modified CMSs increased compared with the unmodified CMS.
- Interactions between functional groups (consisting of F and O atoms) and CO₂ gas were noted.
- The CO₂-adsorption capacity of 2.0 mmol/g obtained for the oxyfluorinated CMS.

G R A P H I C A L A B S T R A C T

To investigate the properties of CO_2 capture, carbon materials with enhanced adsorption performance were prepared by oxyfluorination using physical treatment at various reaction conditions.

ARTICLE INFO

Article history: Received 17 May 2012 Received in revised form 12 September 2012 Accepted 14 September 2012 Available online 25 September 2012

Keywords: Carbon molecular sieve Carbon dioxide Ammonium hydroxide Gas separation Oxyfluorination

ABSTRACT

A carbon molecular sieve (CMS) was modified through oxyfluorination to investigate its carbon dioxide (CO_2) adsorption characteristics. The oxyfluorination was performed at various F_2/O_2 ratios at room temperature. The surface chemical properties and pore size distributions on the CMSs were altered by oxyfluorination and analyzed through XPS and isothermal gas adsorption. The CO_2 adsorption capacity on the oxyfluorinated CMSs was different from that of unmodified CMSs due to changes in the functional groups on the carbon surface. The CO_2 uptake at 273 K was unchanged compared with untreated CMS and measured approximately 2.5 mmol/g. However, at 298 K, the CO_2 adsorption capacity increased from 1.61 mmol/g for an unmodified CMS to 2.07 mmol/g for the oxyfluorination increased basicity on carbon surface. Consequently, interaction energy between functional groups and CO_2 molecular are increased at room temperature and it contributed to enhance CO_2 adsorption amount.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The emission of carbon dioxide into the atmosphere due to the combustion of fossil fuels has created a serious environmental problem [1]. Therefore estimates from the Intergovernmental Panel on Climate Change (IPCC) suggest that CO_2 emissions could be reduced by 80% by equipping modern power plants with suitable carbon dioxide capture and storage (CCS) technologies [2]. Several capture technologies have been suggested, and three CO_2 capture and separation options have been adopted: (1) pre-combustion capture; (2) oxy-fuel combustion; and (3) post-combustion capture [3].

^{*} Corresponding author. Tel.: +82 42 821 7007; fax: +82 42 822 6637. *E-mail address*: youngslee@cnu.ac.kr (Y.-S. Lee).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.09.047