Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: Effect of voltage and catalyst configuration

M.R. Rahimpour\textsuperscript{a,b,*}, A. Jahanmiri\textsuperscript{a}, M. Mohamadzadeh Shirazi\textsuperscript{a}, N. Hooshmand\textsuperscript{a}, H. Taghvaei\textsuperscript{a}

\textsuperscript{a}Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345, Iran
\textsuperscript{b}Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, California 95616, United States

ARTICLE INFO

Article history:
Received 3 September 2012
Received in revised form 20 December 2012
Accepted 4 January 2013
Available online 11 January 2013

Keywords:
Plasma-catalysis configuration
Pulsed plasma
Hydrogen production
Catalyst deactivation
Co-cracking

ABSTRACT

Co-cracking of methane and \( n \)-hexadecane is investigated over Mo–Ni/Al\textsubscript{2}O\textsubscript{3} catalyst in a packed bed dielectric barrier discharge (DBD) plasma reactor. The effects of applied voltage and plasma-catalyst configuration are experimentally studied in terms of process energy efficiency and product composition. Hydrogen and gaseous hydrocarbon (methane, C\textsubscript{2}, C\textsubscript{3} and C\textsubscript{4} components) are obtained as the cracking product. Results show that combination of catalyst and plasma improves energy efficiency of hydrocarbons plasma conversion. The applied voltage has dominant effect on the catalytic-plasma cracking process and in-plasma catalysis configuration is more efficient compared with post-plasma catalysis. The highest energy efficiency is achieved the value of 194.44 l/kW h for in-plasma configuration under highest applied voltage condition (11 kV). In these conditions, the production rate and mole percent of hydrogen are obtained 107.66 ml/min and 63.7\%, respectively. The effect of catalyst deactivation is also investigated on the process variables.

1. Introduction

Catalytic cracking is the process whereby complex long chain hydrocarbons are broken down into lighter and more valuable products in the presence of proper catalyst. This process is further introduced as the decomposition of hydrocarbon molecules in a selective manner to produce mixture of smaller and mostly unsaturated hydrocarbons (like ethylene, propylene, etc.) \cite{1}. Besides cracking reactions, hydrogen is generated as a main component and if it is produced in situ, it can be particularly used in fuel cell system for transportation (on-board application). It is clear that replacing traditional engine of vehicles by fuel cell system is one...