Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures

Chemical Enaineerina

Journal

Guozhao Ji^a, Guoxiong Wang^a, Kamel Hooman^b, Suresh Bhatia^a, João C. Diniz da Costa^{a,*}

^a The University of Queensland, FIMLab – Films and Inorganic Membrane Laboratory, School of Chemical Engineering, Brisbane, Qld 4072, Australia ^b The University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Qld 4072, Australia

HIGHLIGHTS

- ► A model was validated for a multi-tube membrane module for binary gas separation.
- ► H₂ driving force is greatly affected by process conditions and module design.
- ▶ The radius of the module influences significantly on H₂ purity and recovery.
- ▶ Similar counter and co-current flows due to high gas-through-gas diffusion.

ARTICLE INFO

Article history: Received 20 September 2012 Received in revised form 4 December 2012 Accepted 24 December 2012 Available online 29 December 2012

Keywords: Binary gas separation Hydrogen Molecular sieving membrane Multi-tube module

ABSTRACT

An experimentally validated theoretical model was developed to investigate the influence of operating conditions on the performance of a multi-tube membrane module containing cobalt oxide silica (COXS) membranes with molecular sieving properties. The model investigated the separation process for a binary gas mixture consisting of H_2 and Ar at 400 °C. Engineering parameters such as feed flow rate, feed pressure, module size and flow configuration were systematically varied in order to optimise the separation performance promoting three main goals: H₂ yield, H₂ purity and H₂ recovery. Changing these parameters led to different flows and H_2 fractions in the feed domain, thus altering the driving forces for the preferential permeation of H₂. The simulated results suggest that gas separation was greatly improved by reducing the module radius which meets all of the three aforementioned optimisation criteria. Interestingly, increasing the feed flow rate and feed pressure were found to be beneficial but the former led to lower H₂ recovery whilst the latter did not deliver the same purity when compared to lower feed pressure. In addition, two flow configurations, counter-current and co-current, were compared. It was observed that the results of counter-current were effectively the same as the co-current. This was attributed to the high gas-through-gas diffusion for high-temperature membrane operation. Finally, neglecting diffusion effects, or considering advection only, leads to over prediction of H₂ permeate molar fraction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen is widely accepted as a clean energy carrier, particularly in fuel cell deployment, whereby reaction with oxygen from air generates water, an environmentally benign emission. Conventional gas separation technologies using organic membranes require low temperature operation due to the poor thermostability and anti-oxidation properties of polymers. As H₂ is often generated at high temperatures by natural gas reforming or coal gasification [1], separation of H₂ attracts energy penalties due to the required cool down of high temperature streams to meet the operating requirements of polymeric membranes. Inorganic membranes derived from ceramics, silica or metal alloys [2] and zeolites [3,4] can be employed in high temperature gas separation due to their thermo-stability and good resistance to chemical attack. Molecular sieving membranes for H_2 separation are quite promising due to superior performance at elevated temperatures [5,6], especially those derived from metal oxide silica matrices [7]. Therefore, there has been a major concerted effort of the research community to improve the gas separation performance by primarily focusing on membrane synthesis.

However, membrane performance is intrinsically linked to the operating conditions and design of membrane modules, which play a significant role in gas separation processes. It is well known that higher driving forces are favourable for the efficient operation of membrane systems in most cases. Moreover, operating conditions and the membrane module design (size and flow configuration)

^{*} Corresponding author. Tel.: +61 7 3365 6960; fax: +61 7 3365 4199. E-mail address: j.dacosta@uq.edu.au (J.C. Diniz da Costa).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.12.063