Controlled immobilization of methyltrioxorhenium(VII) based on SI-ATRP of 4-vinyl pyridine from halloysite nanotubes for epoxidation of soybean oil

Junqing Jiang, Yanwu Zhang, Danhua Cao, Pingkai Jiang

School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electric Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

Article info
Accepted 30 March 2012
Available online 6 April 2012

Abstract
Poly(4-vinylpyridine) (P-4VP) brushes of different lengths were grafted onto halloysite nanotubes (HNTs) by surface-initiated atom transfer radical polymerization (SI-ATRP) and methyltrioxorhenium(VII) (CH$_3$ReO$_3$, MTO) was immobilized onto HNTs through P-4VP brushes to catalyze epoxidation of soybean oil. 2-Bromoisobutyryl bromine was chosen as the initiator of SI-ATRP and anchored by reacting with hydroxyl groups of HNTs. To reduce the effect of 4-vinylpyridine on the initiator, Me$_6$tren as the ligand was introduced into the polymerization. The length of P-4VP brushes was controlled by the polymerization time. Through coordination between N in pyridine rings and MTO, a novel heterogeneous catalyst with different loadings of MTO for epoxidation of soybean oil was prepared. FTIR, TGA, TEM, GPC, UV–visible absorption spectroscopy and 1H NMR were used to characterize HNTs with P-4VP brushes and the heterogeneous catalysts. The results indicated that the length of P-4VP brushes increased with the polymerization time and MTO loading increased with P-4VP brush length. MTO molecules dispersed uniformly in P-4VP brushes and the heterogeneous MTO combined with H$_2$O$_2$ had good catalytic activity and selectivity to epoxidation of soybean oil. TOF of heterogeneous MTO increased with MTO loading and no ring-opening reaction occurred during epoxidation.

© 2012 Published by Elsevier B.V.

1. Introduction

Epoxidation is one method of functionalizing plant oils and derivatives. Recently epoxidation of plant oil has been studied widely [1,2]. Various novel catalysts including ion-exchange resins, phosphotungstic acids, and enzymes have been tried to develop green, economical technological process of epoxidation. Methyltrioxorhenium(VII) (CH$_3$ReO$_3$, MTO) has obvious advantages to green, economical technological process of epoxidation. Methyltrioxorhenium(VII) (CH$_3$ReO$_3$, MTO) has obvious advantages to green, economical technological process of epoxidation. Methyltrioxorhenium(VII) (CH$_3$ReO$_3$, MTO) has obvious advantages to green, economical technological process of epoxidation.