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a b s t r a c t

A numerical solution of steady-state heat conduction problems is obtained using the strong form

meshless point collocation (MPC) method. The approximation of the field variables is performed using

the Moving Least Squares (MLS) and the local form of the multiquadrics Radial Basis Functions (LRBF).

The accuracy and the efficiency of the MPC schemes (with MLS and LRBF approximations) are

investigated through variation (i) of the nodal distribution type used, i.e. regular or irregular, ensuring

the so-called positivity conditions, (ii) of the number of nodes in the total spatial domain (TD), and (iii)

of the number of nodes in the support domain (SD). Numerical experiments are performed on

representative case studies of increasing complexity, such as, (a) a regular geometry with a constant

conductivity and uniformly distributed heat source, (b) a regular geometry with a spatially varying

conductivity and non-uniformly distributed heat source, and (c) an irregular geometry in case of

insulation of vapor transport tubes, as well. Steady-state boundary conditions of the Dirichlet-,

Neumann-, or Robin-type are assumed. The results are compared with those calculated by the Finite

Element Method with an in-house code, as well as with analytical solutions and other literature data.

Thus, the accuracy and the efficiency of the method are demonstrated in all cases studied.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of heat transfer is of fundamental importance in
many branches of engineering and science. Furthermore, its study
provides vital economical and efficient solutions for a plethora of
critical problems. It refers to the section of engineering science
that studies the energy transport between material bodies due to
a temperature difference [1–4]. Additionally, modelling heat
transport and temperature variations within biological tissues
and body organs is an important issue in medical thermal
therapeutic applications [5]. Heat transfer problems of modern
technological value usually cannot be solved in an analytical
manner, except for a few simplified cases. Thus, traditional
numerical techniques, such as finite differences (FDM) [6,7], finite
volume methods (FVM) [8], finite element methods (FEM) [9], and
boundary element methods (BEM) [10], have been effectively and
routinely applied.

In spite of their great success, the traditional numerical
methods still have some elementary drawbacks that impair their

computational efficiency and even limit their applicability to
more practical problems, particularly in three-dimensional pro-
blems. The main reasons of deficiency are related to the use of low
order piecewise polynomial approximations, and the necessity to
create a mesh in the application domain and its boundary. As a
result, the numerical solution depends strongly on the mesh
properties. More precisely, the finite volume method (FVM) and
the finite element method (FEM) have been the dominant
numerical schemes for a variety of practical engineering and
physical problems, since they have the advantage of being
applicable at irregular geometries. Despite the fact that mesh
generation can be fully automated in two dimensions, this can be
a troublesome procedure at higher dimensions, usually demand-
ing substantial human intervention. Thus, in the majority of heat
transfer problems, mesh generation is a far more time consuming
and expensive task than the solution of the partial differential
equations (PDEs) itself.

Owing to the difficulty of the traditional numerical schemes in
the mesh generation, new numerical methods, generally called
‘‘meshless’’ methods (also called ‘‘meshfree’’ methods), have been
developed in recent years. Meshless methods emerged as a
potential alternative for solutions in computational mechanics,
and a variety of such approaches have appeared [11, 12 and
references therein]. Meshless techniques overcome these
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