Regularized meshless method analysis of the problem of obliquely incident water wave

Kue-Hong Chen a,∗, Mi-Cheng Lu b, Hui-Mi Hsu a

a Department of Civil Engineering, National Ilan University, Ilan 26047, Taiwan
b Department of Information Management, National Chung-Cheng University, Chia-Yi 62101, Taiwan

A R T I C L E I N F O

Article history:
Received 12 May 2010
Accepted 26 September 2010
Available online 5 November 2010

Keywords:
Oblique incident
Regularized meshless method
Method of fundamental solutions
Desingularization technique
Submerged breakwater

A B S T R A C T

In this paper, an application of regularized meshless method (RMM) for solving the problem of obliquely incident water wave passing a submerged breakwater is presented. By using desingularization technique to regularize the singularity and hypersingularity of the kernel functions, source points can be located on the physical boundary of an arbitrary domain. To verify the practicability and validity of the RMM, simulations for observing the propagation of oblique incident wave through a barrier are presented where the modified Helmholtz equation is satisfied. Finally, three examples are given to show the effects of breakwater with rigid and absorbing boundary conditions to energy dissipation caused by existence of a barrier. After comparing such analytical solution with the corresponding boundary element method (BEM) solutions, they are shown to be in good agreement.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, meshless method, so-called mesh free method, has been a well-known numerical method, and it has been a popular method for scientific computing due to a strong demand of taking a fewer time on mesh generation in domains of high dimensions. The model setup in the process of using meshless methods takes less time than that in using boundary element method. It is expected that meshless methods will be a significant and promising alternative that dominates future numerical computations. Several important types of meshless methods are reported in literatures [3–5,10–15,17,18,21,22,24,27,29,37]. Among the aforesaid meshless methods, method of fundamental solutions (MFS) has been extensively applied to solving engineering problems [4,17,29], in which this method is related to an indirect method of single-layer potential. MFS is one kind of meshless method in which only boundary nodes are needed. Comprehensive reviews of the MFS were published by Fairweather and Karageorghis [17] and Chen and Golberg [4]. In order to avoid the problem of singularity, the sources points of a set of single layer potential (corresponding to the fundamental solution) are located on nonphysical boundary (namely fictitious boundary). A singularity-free method with regular formulation is then obtained. It is effective and relatively easy to use. However, the MFS has not become a popular numerical method because of some controversy from making an artificial selection of off-set distance between artificial boundary and physical boundary. In general, it is difficult to choose an optimal fictitious boundary in a complicated geometry. This brings some limitation to the implementation of MFS, since the appropriate location of source points requires accurate estimation. The diagonal coefficients of the influence matrices are divergent in common cases when the corresponding fictitious boundary approaches the real boundary. Despite of the disappearance of singularities, the influence matrices become ill-posed when the fictitious boundary is far away from the real boundary. The results become very unstable, since the condition number gets very large.

Aim of this paper is to propose the developed meshless method [35], the regularized meshless method (RMM), for solving modified Helmholtz equation, where the source points are located on the physical boundary. We present an alternative to the traditional numerical approach by retaining the salient meshless features of MFS and taking normal derivative of the fundamental solution of modified Helmholtz equation as radial basis functions (RBF) [4,5,12,34,35]. The solution is expressed in terms of a double-layer potential instead of a single-layer potential on the physical boundary without having an integration process. Through the application of desingularization technique upon the diagonal terms when the source point and boundary points are coincident, the proposed meshless method can avoid the occurrence of ambiguity of off-set distance in the conventional MFS.

By using the regularization technique of subtracting and adding-back, the singularity and hypersingularity of the kernel functions can be regularized. The main idea is to add an augmented series