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a b s t r a c t

Radial basis functions are a very accurate means of solving interpolation and partial differential equations

problems. The global radial basis functions collocation technique produces ill-conditioning matrices

when using multiquadrics, making the choice of the shape parameter a crucial issue. The use of local

numerical schemes, such as finite differences produces much better conditioned matrices. However, finite

difference schemes are limited to special grids. For scattered points, a combination of finite differences

and radial basis functions would be a possible solution. In this paper, we use a higher-order shear

deformation plate theory and a radial basis function—finite difference technique for predicting the static

behavior of thin and thick composite plates. Through numerical experiments on square and L-shaped

plates, the accuracy and efficiency of this collocation technique is demonstrated, and the numerical

accuracy and convergence are thoughtfully examined. This technique shows great potential to solve large

engineering problems without the issue of ill-conditioning.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of laminated composite plates has been carried out
by numerical techniques based on finite differences or finite
elements. Historical view of the shear deformations theories can
be found in [1–3]. More recently, meshless methods proved to be an
interesting alternative as they avoid the meshing phase in the
analysis. Two main meshless approaches have been used in the
past: the weak-form and the strong-form techniques. Weak-form
methods include for example the element-free Galerkin [4,5] or the
Petrov–Galerkin [6,7] methods where a weight-residual approach
is commonly used. The strong-form methods typically consider the
interpolation directly on the equations of motion.

Radial basis functions were used by Hardy [8,9] for the
interpolation of geographical scattered data and later used by
Kansa [10,11] for the solution of partial differential equations
(PDEs), with a global collocation. The global collocation proposed
by Kansa considers a set of points distributed over a domain and
boundary of the problem. Each point is connected, through a radial
basis function, to all the remaining points of the nodal set. This
global collocation generally produces dense, unsymmetrical, ill-
conditioned matrices, which in turn can produce poor results and
instability in the solution. However, when properly used, the global

collocation produces excellent results. Also, using compact support
functions with Kansa’s method can produce sparse matrices at the
cost of lower accuracy. Previously the authors successfully applied
this meshless global collocation method to analyse plates and
shells [12–23].

As a result of the ill-conditioning, some authors proposed a
radial basis function method with a local approach [24–28]. The
idea is to use radial basis functions with a local collocation as in
finite differences, reducing the number of connections (the so-
called support) for each node (also called center), hence producing
a sparse matrix. This local approach retains many of the advantages
of the global collocation, yet reducing the conditioning of the
matrix. It is expected that the choice of the shape parameter will no
longer be a critical issue, as in the case of global collocation.

In the present study we implemented, for the first time, the
third-order theory of Reddy [29,30] with a local mesh-free method:
the local radial basis function via finite difference approach method
(RBF-FD), to model square isotropic, composite, sandwich and
L-shaped isotropic plates. We compare the present local RBF-FD
with exact solutions or other numerical techniques and the global
Kansa collocations in some plate bending problems.

2. The RBF-FD method

The basic formulation of the RBF-FD method is presented. The
finite difference method approximates derivatives of a function
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