Evaluation on potential for assessing indoor formaldehyde using biosensor system based on swimming behavior of Japanese medaka (oryzias latipes)

Jonghun Kim a, *, Shinsuke Kato b, Kenichiro Takeuchi c, Tetsu Tatsuma b, Ik Joon Kang d

a Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505, Japan
b Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8505, Japan
c Sumitomo Forestry Co., Ltd., Japan
a Aquatic Biomonitoring and Environmental Laboratory, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan

ABSTRACT

In order to develop an early-warning biosensor system for predicting the impact on health of long-term and low-level exposure to indoor chemical compounds, e.g. volatile organic compounds (VOCs), we evaluated the potential for assessing indoor air quality using the biosensor system based on the swimming behavior of Japanese medaka (oryzias latipes) as an indicator of indoor air quality in the beginning. As a technology to dissolve chemical compounds into water efficiently, a micro bubble generator was introduced. The test chemical was formaldehyde which is a representative of chemical compounds existing indoors. The result of the measuring solubility of formaldehyde was that formaldehyde concentration in water was raised to 0.12 mg/L when 1.0 mg/m3 of formaldehyde in air was bubbled for approximately 44 h. The correlation between the 0.1 mg/L of formaldehyde in water, which is roughly equivalent to 0.83 mg/m3 of formaldehyde in air, and the swimming activities of medaka was investigated. The fish showed abnormal behavior compared to one under a control treatment, e.g. the body movement distance decreased and the duration time below the upper water column increased significantly. It was verified that it is possible to detect concentrations of formaldehyde of 0.83 mg/m3 in indoor air using this proposed biosensor system.

1. Introduction

Increasing environmental awareness has led to interest in indoor air quality, on which many studies have been conducted. Especially, some studies have shown that that long-term and low-level exposure to volatile organic compounds (VOCs) is responsible for several health-related ailments [5–7,15,16,21,22,24,27,28,35,38,42]. Therefore, it is requested to detect these chemical substances and predict their concentration levels over prolonged periods. Furthermore, it is necessary to investigate whether they have the potential to affect health even at low concentrations, e.g. below established guidelines [36,41]. Therefore, it is requested to detect these chemical substances and predict their concentration levels over prolonged periods. Furthermore, it is necessary to investigate whether they have the potential to affect health even at low concentrations, e.g. below established guidelines [36,41]. It was verified that it is possible to detect concentrations of formaldehyde of 0.83 mg/m3 in indoor air using this proposed biosensor system.

© 2010 Elsevier Ltd. All rights reserved.